Cite

[1] S. S. Kalsi, Applications of High Temperature Superconductors to Electric Power Equipment, 1st ed. John Wiley & Sons, Inc., 2011, p. 333.10.1002/9780470877890Search in Google Scholar

[2] A. Hobl, W. Goldacker, B. Dutoit, L. Martini, A. Petermann, and P. Tixador, “Design and Production of the ECCOFLOW Resistive Fault Current Limiter,” IEEE Transactions on Applied Superconductivity, vol. 23, no. 3, pp. 5601804-5601804, Jun. 2013.Search in Google Scholar

[3] J. M. Pina, P. Pereira, A. Pronto, P. Arsénio, and T. Silva, “Modelling and Simulation of Inductive Fault Current Limiters,” Physics Procedia, vol. 36, pp. 1248-1253, 2012.Search in Google Scholar

[4] P. Tixador, P, “Development of superconducting power devices in Europe,” Physica C: Superconductivity, vol. 470, no. 20, pp. 971-979, Jun. 2010.10.1016/j.physc.2010.05.014Search in Google Scholar

[5] H. Heydari, A. A. Abrishami, and M. Mordadi Bidgoli, “Comprehensive Analysis for Magnetic Shield Superconducting Fault Current Limiters,” IEEE Transactions on Applied Superconductivity, vol. 23, no. 5, pp. 5604610-5604610, Oct. 2013.Search in Google Scholar

[6] W.-S. Moon, J.-N. Won, J.-S. Huh, and J.-C. Kim, “A Study on the Application of a Superconducting Fault Current Limiter for Energy Storage Protection in a Power Distribution System,” IEEE Transactions on Applied Superconductivity, vol. 23, no. 3, pp. 5603404-5603404, Jun. 2013.Search in Google Scholar

[7] A. Hobl, W. Goldacker, B. Dutoit, L. Martini, A. Petermann, and P. Tixador, “Design and Production of the ECCOFLOW Resistive Fault Current Limiter,” IEEE Transactions on Applied Superconductivity, vol. 23, no. 3, pp. 5601804-5601804, Jun. 2013.Search in Google Scholar

[8] L. Martini, M. Bocchi, M. Ascade, A. Valzasina, V. Rossi, C. Ravetta, and G. Angeli, “Live-Grid Installation and Field Testing of the First Italian Superconducting Fault Current Limiter,” IEEE Transactions on Applied Superconductivity, vol. 23, no. 3, pp. 5602504-5602504, Jun. 2013.Search in Google Scholar

[9] R. Dommerque, S. Krämer, A. Hobl, R. Böhm, M. Bludau, J. Bock, D. Klaus, H. Piereder, A. Wilson, T Krüger, G Pfeiffer, K Pfeiffer, and S. Elschner, “First commercial medium voltage superconducting faultcurrent limiters: production, test and installation,” Superconductor Science and Technology, vol. 23, no. 3, pp. 034020, Feb. 2010.Search in Google Scholar

[10] W. Paul, M. Lakner, J. Rhyner, P. Unternährer, T. Baumann, M. Chen, L. Widenhorn, and A. Guérig, “Test of 1.2 MVA high- superconducting fault current limiter,” Supercond. Sci. Technol., vol. 10, no. 12, pp. 914-918, Dec. 1997.10.1088/0953-2048/10/12/011Search in Google Scholar

[11] C. Y. Shigue, T. T. da Cruz, J. S. Lamas, C. A. Baldan, and E. R. Filho, “Analysis of the E-J Curve of HTS Tapes Under DC and AC Magnetic Fields at 77 K,” IEEE Transactions on Applied Superconductivity, vol. 19, no, 3, pp. 3332-3335, Jun. 2009.Search in Google Scholar

[12] J. S. Lamas, C. Baldan, C. Y. Shigue, A. Silhanek, A., and V. Moshchalkov, “Electrical and Magnetic Characterization of BSCCO and YBCO HTS Tapes for Fault Current Limiter Application,” IEEE Transactions on Applied Superconductivity, vol. 21, no. 3, pp. 3398-3402, Jun. 2011.Search in Google Scholar

[13] J. C. Llambes, D. Hazelton, J. Duval, M. Albertini, S. Repnoy, V Selvamanickam, G. Majkic, I. Kesign, J. Langston, M. Steurer, F. Bogdan, J. Hauer, D. Crook, S. Ranner, T. Williams, and M. Coleman, “Performance of 2G HTS Tapes in Sub-Cooled LN2 for Superconducting Fault Current Limiting Applications,” IEEE Transactions on Applied Superconductivity, vol. 21, no.3, pp. 1206-1208, Jun. 2011.Search in Google Scholar

[14] Y. Shiohara, M. Yoshizumi, Y. Takagi, and T. Izumi, “Future prospects of high Tc superconductors-coated conductors and their applications,” Physica C: Superconductivity, vol. 484, pp. 1-5, Mar. 2012.10.1016/j.physc.2012.03.058Search in Google Scholar

[15] P. Arsénio, T. Silva, N. Vilhena, J. M. Pina, and A. Pronto, “Analysis of Characteristic Hysteresis Loops of Magnetic Shielding Inductive Fault Current Limiters,” IEEE Transactions on Applied Superconductivity, vol. 23, no. 3, pp. 5601004-5601004, Jun. 2013.Search in Google Scholar

[16] A. Usoskin, F. Mumford, R. Dietrich, A. Handaze, B. Prause, A. Rutt, and K. Schlenga, “Inductive Fault Current Limiters: Kinetics of Quenching and Recovery,” IEEE Transactions on Applied Superconductivity, vol. 19, no. 3, pp. 1859-1862, Jun. 2009.Search in Google Scholar

[17] J. M. Pina, M. V. Neves, and A. L. Rodrigues, “High Temperature Superconducting Fault Current Limiters as Enabling Technology in Electrical Grids with Increased Distributed Generation Penetration,” First IFIP WG 5.5/SOCOLNET Doctoral Conference on Computing, Electrical and Industrial Systems, vol. 314, pp. 427- 434, 2010.10.1007/978-3-642-11628-5_47Search in Google Scholar

[18] C. Gandioli, M. Alvarez-Herault, P. Tixador, N. Hadjsaid, and D.-M. R. Medina, “Innovative Distribution Networks Planning Integrating Superconducting Fault Current Limiters,” IEEE Transactions on Applied Superconductivity, vol. 23, no. 3, pp. 5603904-5603904, Jun. 2013.Search in Google Scholar

[19] Y. Shiohara, M. Yoshizumi, Y. Takagi, and T. Izumi, “Future prospects of high Tc superconductors-coated conductors and their applications,” Phys. C Supercond., vol. 484, pp. 1-5, Jan. 2013.10.1016/j.physc.2012.03.058Search in Google Scholar

[20] Heydari, H., Faghihi, F., Sharifi, R., and Poursoltanmohammadi, A. H., “Superconducting technology for overcurrent limiting in a 25 kA current injection system,” Superconductor Science and Technology, vol. 21, no. 9, pp. 095016, Jul. 2008.Search in Google Scholar

[21] A. Usoskin, F. Mumford, R. Dietrich, A. Handaze, B. Prause, A. Rutt, and K. Schlenga, “Inductive Fault Current Limiters: Kinetics of Quenching and Recovery,” IEEE Transactions on Applied Superconductivity, vol. 19, no. 3, pp. 1859-1862, Jun. 2009.Search in Google Scholar

[22] M. Noe, and M. Steurer, “High-temperature superconductor fault current limiters: concepts, applications, and development status,” Superconductor Science and Technology, vol. 20, no. 3, R15-R29, Jan. 2007.10.1088/0953-2048/20/3/R01Search in Google Scholar

[23] S. Kozak, T. Janowski, G. Wojtasiewicz, J. Kozak, B. Kondratowicz-Kucewicz, and M. Majka, “The 15 kV Class Inductive SFCL,” IEEE Transactions on Applied Superconductivity, vol. 20, no. 3, pp. 1203-1206, Jun. 2010.Search in Google Scholar

[24] J. Kozak, M. Majka, S. Kozak, and T. Janowski, “Design and Tests of Coreless Inductive Superconducting Fault Current Limiter,” IEEE Transactions on Applied Superconductivity, vol. 22, no. 3, pp. 5601804-5601804, Jun. 2012.Search in Google Scholar

[25] G. Wojtasiewicz, T. Janowski, S. Kozak, J. Kozak, M. Majka, and B. Kondratowicz-Kucewicz, “Experimental Investigation of a Model of a Transformer-Type Superconducting Fault Current Limiter With a Superconducting Coil Made of a 2G HTS Tape,” IEEE Transactions on Applied Superconductivity, vol. 24, no. 3, pp. 1-5, Jun. 2014.10.1109/TASC.2013.2295117Search in Google Scholar

[26] V. Meerovich, V. Sokolovsky, and I. Vajda, “Calculation principles for a superconducting current-limiting transformer,” Superconductor Science and Technology, vol. 20, no. 10, pp. 1046-1053, 2007.Search in Google Scholar

[27] Y. Shirai, K. Fujikawa, T. Kitagawa, M. Shiotsu, H. Hatta, S. Muroya, and T. Nitta, "Study on recovery time of a superconducting fault current limiter with adjustable trigger current level," IEEE Transactions on Applied Superconductivity, vol. 11, no. 1, pp. 2086-2089, Mar. 2001.Search in Google Scholar

[28] J. Kozak, M. Majka, S. Kozak, and T. Janowski, “Comparison of Inductive and Resistive SFCL,” IEEE Transactions on Applied Superconductivity, vol. 23, no. 3, pp. 5600604-5600604, Jun. 2013. Search in Google Scholar

eISSN:
2255-9159
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other