Cite

Sun P, Lu X, Xu C, Sun W, Pan B. Understanding of COVID-19 based on current evidence. J Med Virol 2020;92:548–551.SunPLuXXuCSunWPanBUnderstanding of COVID-19 based on current evidenceJ Med Virol20209254855110.1002/jmv.25722Search in Google Scholar

C. H, Y. W, X. L, L. R, J. Z, Y. H. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London England) 2020;497–506:497–506.C. H, Y. W, X. L, L. R, J. Z, Y. HClinical features of patients infected with 2019 novel coronavirus in Wuhan, ChinaLancet (London England)2020497–50649750610.1016/S0140-6736(20)30183-5Search in Google Scholar

Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet (London England) 2020;395:507–513.ChenNZhouMDongXQuJGongFHanYEpidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive studyLancet (London England)202039550751310.1016/S0140-6736(20)30211-7Search in Google Scholar

Brian DA, Baric RS. Coronavirus genome structure and replication. Curr Top Microbiol Immunol 2005;287:1–30.BrianDABaricRSCoronavirus genome structure and replicationCurr Top Microbiol Immunol200528713010.1007/3-540-26765-4_1Search in Google Scholar

Wrapp D, Wang N, K. SC, J. AG, C. LH, Abiona O. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Sci (N Y NY) 2020;367:1260–1263.WrappDWangNK. SC, J. AG, C. LH, Abiona OCryo-EM structure of the 2019-nCoV spike in the prefusion conformationSci (N Y NY)20203671260126310.1126/science.abb2507Search in Google Scholar

A. CW, Y. JP, M. AT, Wall A, A. TM, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020;181:281–292.e286.A. CW, Y. JP, M. AT, Wall A, A. TM, Veesler DStructure, Function, and Antigenicity of the SARS-CoV-2 Spike GlycoproteinCell2020181281292e28610.1016/j.cell.2020.02.058Search in Google Scholar

Sternberg A, Naujokat C. Structural features of coronavirus SARS-CoV-2 spike protein: Targets for vaccination. Life Sci 2020;257:118056.SternbergANaujokatCStructural features of coronavirus SARS-CoV-2 spike protein: Targets for vaccinationLife Sci202025711805610.1016/j.lfs.2020.118056Search in Google Scholar

Sun J, Zhu A, Li H, Zheng K, Zhuang Z, Chen Z. Isolation of infectious SARS-CoV-2 from urine of a COVID-19 patient. Emerg Microbes Infect 2020;9:991–993.SunJZhuALiHZhengKZhuangZChenZIsolation of infectious SARS-CoV-2 from urine of a COVID-19 patientEmerg Microbes Infect2020999199310.1080/22221751.2020.1760144Search in Google Scholar

Zhu F, Li Y, Guan X, Hou L, Wang W, Li X. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet (London England) 2020;395:1845–1854.ZhuFLiYGuanXHouLWangWLiXSafety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trialLancet (London England)20203951845185410.1016/S0140-6736(20)31208-3Search in Google Scholar

Pandey SC, Pande V, Sati D, Upreti S, Samant M. Vaccination strategies to combat novel corona virus SARS-CoV-2. Life Sci 2020;256:1179.PandeySCPandeVSatiDUpretiSSamantMVaccination strategies to combat novel corona virus SARS-CoV-2Life Sci2020256117910.1016/j.lfs.2020.117956Search in Google Scholar

Yu P, Qi F, Xu Y, Li F, Liu P, Liu J, et al. Age-related rhesus macaque models of COVID-19. Anim Model Exp Med 2020;3:93–97.YuPQiFXuYLiFLiuPLiuJet alAge-related rhesus macaque models of COVID-19Anim Model Exp Med20203939710.1002/ame2.12108Search in Google Scholar

Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science (80- ) 2020;369:77–81.GaoQBaoLMaoHWangLXuKYangMet alDevelopment of an inactivated vaccine candidate for SARS-CoV-2Science (80- )2020369778110.1126/science.abc1932Search in Google Scholar

Mathew S, Faheem M, Hassain N, Benslimane F, Al Thani A, Zaraket H, et al. Platforms Exploited for SARS-CoV-2 Vaccine Development. Vaccines 2021;9(11).MathewSFaheemMHassainNBenslimaneFAlThani AZaraketHet alPlatforms Exploited for SARS-CoV-2 Vaccine DevelopmentVaccines202191110.3390/vaccines9010011Search in Google Scholar

Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med 2020;46:586–590.ZhangHPenningerJMLiYZhongNSlutskyASAngiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic targetIntensive Care Med20204658659010.1007/s00134-020-05985-9Search in Google Scholar

Mercado NB, Zahn R, Wegmann F, Loos C, Chandrashekar A, Yu J, et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature 2020;586:583– 588.MercadoNBZahnRWegmannFLoosCChandrashekarAYuJet alSingle-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaquesNature202058658358810.1038/s41586-020-2607-zSearch in Google Scholar

Flingai S, Czerwonko M, Goodman J, Kudchodkar S, Muthumani K, Weiner D. Synthetic DNA Vaccines: Improved Vaccine Potency by Electroporation and Co-Delivered Genetic Adjuvants. Front Immunol 2013;4.FlingaiSCzerwonkoMGoodmanJKudchodkarSMuthumaniKWeinerDSynthetic DNA Vaccines: Improved Vaccine Potency by Electroporation and Co-Delivered Genetic AdjuvantsFront Immunol2013410.3389/fimmu.2013.00354Search in Google Scholar

Amanat F, Krammer F. SARS-CoV-2 Vaccines: Status Report. Immunity. 52 2020;583–589.AmanatFKrammerFSARS-CoV-2 Vaccines: Status ReportImmunity52202058358910.1016/j.immuni.2020.03.007Search in Google Scholar

Tu Y, Chien C, Yarmishyn A, Lin YY, Luo Y, Lin YT. A Review of SARS-CoV-2 and the Ongoing Clinical Trials. Int J Mol Sci 2020;21:2657.TuYChienCYarmishynALinYYLuoYLinYTA Review of SARS-CoV-2 and the Ongoing Clinical TrialsInt J Mol Sci202021265710.3390/ijms21072657Search in Google Scholar

Jackson LA., Anderson E, Rouphael N, Roberts P, Makhene M, Coler R. An mRNA Vaccine against SARS-CoV-2 - Preliminary Report. New Engl J Med 2020;JacksonLA.AndersonERouphaelNRobertsPMakheneMColerRAn mRNA Vaccine against SARS-CoV-2 - Preliminary ReportNew Engl J Med202010.1056/NEJMoa2022483Search in Google Scholar

Dawood AA. Mutated COVID-19, May Foretells Mankind in a Great Risk in the Future. New Microbes New Infect 2020;35:100673.DawoodAAMutated COVID-19, May Foretells Mankind in a Great Risk in the FutureNew Microbes New Infect20203510067310.1016/j.nmni.2020.100673Search in Google Scholar

Korber B, Fischer WM, Gnanakaran S, Yoon, H. T, Heiler J, Abfalterer W, et al. Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 2020;KorberBFischerWMGnanakaranSYoonH. THeilerJAbfaltererWet alTracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virusCell202010.1016/j.cell.2020.06.043Search in Google Scholar

Saha P, Banerjee, A.K., Tripathi PP, Srivastava AK, Ray U. A virus that has gone viral: amino acid mutation in S protein of Indian isolate of Coronavirus COVID-19 might impact receptor binding, and thus, infectivity. Biosci Rep 2020;40:BSR20201312.SahaPBanerjeeA.K.TripathiPPSrivastavaAKRayUA virus that has gone viral: amino acid mutation in S protein of Indian isolate of Coronavirus COVID-19 might impact receptor binding, and thus, infectivityBiosci Rep202040BSR2020131210.1042/BSR20201312Search in Google Scholar

Becerra-Flores M, Cardozo T. SARS-CoV-2 viral spike G614 mutation exhibits higher case fatality rate. Int J Clin Pr 2020;(e13525).Becerra-FloresMCardozoTSARS-CoV-2 viral spike G614 mutation exhibits higher case fatality rateInt J Clin Pr2020e1352510.1111/ijcp.13525Search in Google Scholar

Li Q, Wu J, Nie J, Zhang L, Hao H, Liu S, et al. The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity. Cell 2020;182:1284–1294.LiQWuJNieJZhangLHaoHLiuSet alThe Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and AntigenicityCell20201821284129410.1016/j.cell.2020.07.012Search in Google Scholar

Rauch S, Jasny E, Schmidt KE, Petsch B. New Vaccine Technologies to Combat Outbreak Situations. Front Immunol 2018;9:1963.RauchSJasnyESchmidtKEPetschBNew Vaccine Technologies to Combat Outbreak SituationsFront Immunol20189196310.3389/fimmu.2018.01963Search in Google Scholar

Kaur SP, Gupta V. COVID-19 Vaccine: A comprehensive status report. Virus Res 2020;288:198114.KaurSPGuptaVCOVID-19 Vaccine: A comprehensive status reportVirus Res202028819811410.1016/j.virusres.2020.198114Search in Google Scholar

van Riel D, DeWit E. Next-generation vaccine platforms for COVID-19. Nat Mater 2020;19:810–812.van RielDDeWitENext-generation vaccine platforms for COVID-19Nat Mater20201981081210.1038/s41563-020-0746-0Search in Google Scholar

Armengol G, Ruiz LM, Orduz S. The injection of plasmid DNA in mouse muscle results in lifelong persistence of DNA, gene expression, and humoral response. Mol Biotechnol 2004;27:109–118.ArmengolGRuizLMOrduzSThe injection of plasmid DNA in mouse muscle results in lifelong persistence of DNA, gene expression, and humoral responseMol Biotechnol20042710911810.1385/MB:27:2:109Search in Google Scholar

eISSN:
2564-615X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Genetics, Biotechnology, Bioinformatics, other