Open Access

Point-of-Care Diagnostics: Molecularly Imprinted Polymers and Nanomaterials for Enhanced Biosensor Selectivity and Transduction


Cite

Wang HD, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, Abera SF, Abraha HN, Abu-Raddad LJ, Abu-Rmeileh NME. Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390:1084-1150WangHDAbajobirAAAbateKHAbbafatiCAbbasKMAbd-AllahFAberaSFAbrahaHNAbu-RaddadLJAbu-RmeilehNMEGlobal, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970-2016: a systematic analysis for the Global Burden of Disease Study 2016Lancet20173901084115010.1016/S0140-6736(17)31833-0Search in Google Scholar

Barber RM, Fullman N, Sorensen RJ, Bollyky T, McKee M, Nolte E, Abajobir AA, Abate KH, Abbafati C, Abbas KM. Healthcare Access and Quality Index based on mortality from causes amenable to personal health care in 195 countries and territories, 1990–2015: a novel analysis from the Global Burden of Disease Study 2015. The Lancet 2017; 390:231-266BarberRMFullmanNSorensenRJBollykyTMcKeeMNolteEAbajobirAAAbateKHAbbafatiCAbbasKMHealthcare Access and Quality Index based on mortality from causes amenable to personal health care in 195 countries and territories, 1990–2015: a novel analysis from the Global Burden of Disease Study 2015The Lancet201739023126610.1016/S0140-6736(17)30818-8Search in Google Scholar

Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y, Wang X, Yuan J, Li T, Li J, Qian S, Hong C, Wang F, Liu Y, Wang Z, He Q, Li Z, He B, Zhang T, Fu Y, Ge S, Liu L, Zhang J, Xia N, Zhang Z. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis 2020.ZhaoJYuanQWangHLiuWLiaoXSuYWangXYuanJLiTLiJQianSHongCWangFLiuYWangZHeQLiZHeBZhangTFuYGeSLiuLZhangJXiaNZhangZAntibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019Clin Infect Dis202010.1093/cid/ciaa344718433732221519Search in Google Scholar

Yu X, Sun S, Shi Y, Wang H, Zhao R, Sheng J. SARS-CoV-2 viral load in sputum correlates with risk of COVID-19 progression. Crit Care 2020; 24:170YuXSunSShiYWangHZhaoRShengJSARS-CoV-2 viral load in sputum correlates with risk of COVID-19 progressionCrit Care20202417010.1186/s13054-020-02893-8717937632326952Search in Google Scholar

Palant CE, Chawla LS, Faselis C, Li P, Pallone TL, Kimmel PL, Amdur RL. High serum creatinine nonlinearity: a renal vital sign? Am J Physiol Renal Physiol 2016; 311:F305-9PalantCEChawlaLSFaselisCLiPPalloneTLKimmelPLAmdurRLHigh serum creatinine nonlinearity: a renal vital sign?Am J Physiol Renal Physiol2016311F305910.1152/ajprenal.00025.2016497188627194712Search in Google Scholar

Canovas R, Cuartero M, Crespo GA. Modern creatinine (Bio)sensing: Challenges of point-of-care platforms. Biosens Bioelectron 2019; 130:110-124CanovasRCuarteroMCrespoGAModern creatinine (Bio)sensing: Challenges of point-of-care platformsBiosens Bioelectron201913011012410.1016/j.bios.2019.01.04830731344Search in Google Scholar

Qin X, Rui J, Xia Y, Mu H, Song SH, Raja Aziddin RE, Miles G, Sun Y, Chun S. Multi-center Performance Evaluations of Tacrolimus and Cyclosporine Electrochemiluminescence Immunoassays in the Asia-Pacific Region. Ann Lab Med 2018; 38:85-94QinXRuiJXiaYMuHSongSHRaja AziddinREMilesGSunYChunSMulti-center Performance Evaluations of Tacrolimus and Cyclosporine Electrochemiluminescence Immunoassays in the Asia-Pacific RegionAnn Lab Med201838859410.3343/alm.2018.38.2.85573668429214751Search in Google Scholar

Romano P, da Luz Fernandes M, de Almeida Rezende Ebner P, Duarte de Oliveira N, Mitsue Okuda L, Agena F, Mendes ME, Massakazu Sumita N, Coelho V, David-Neto E, Zocoler Galante N. UPLC-MS/MS assay validation for tacrolimus quantitative determination in peripheral blood T CD4+ and B CD19+ lymphocytes. J Pharm Biomed Anal 2018; 152:306-314RomanoPda Luz FernandesMde Almeida Rezende EbnerPDuarte de OliveiraNMitsue OkudaLAgenaFMendesMEMassakazu SumitaNCoelhoVDavid-NetoEZocoler GalanteNUPLC-MS/MS assay validation for tacrolimus quantitative determination in peripheral blood T CD4+ and B CD19+ lymphocytesJ Pharm Biomed Anal201815230631410.1016/j.jpba.2018.01.00229471254Search in Google Scholar

Obama B. United States Health Care Reform: Progress to Date and Next Steps. JAMA 2016; 316:525-32ObamaBUnited States Health Care Reform: Progress to Date and Next StepsJAMA20163165253210.1001/jama.2016.9797506943527400401Search in Google Scholar

Papanicolas I, Woskie LR, Jha AK. Health Care Spending in the United States and Other High-Income Countries. JAMA 2018; 319:1024-1039PapanicolasIWoskieLRJhaAKHealth Care Spending in the United States and Other High-Income CountriesJAMA20183191024103910.1001/jama.2018.115029536101Search in Google Scholar

Bhattarai J, Bentley J, Morean W, Wegener ST, Pollack Porter KM. Promoting equity at the population level: Putting the foundational principles into practice through disability advocacy. Rehabil Psychol 2020; 65:87-100BhattaraiJBentleyJMoreanWWegenerSTPollack PorterKMPromoting equity at the population level: Putting the foundational principles into practice through disability advocacyRehabil Psychol2020658710010.1037/rep0000321728589132297777Search in Google Scholar

Bethell CD, Kogan MD, Strickland BB, Schor EL, Robertson J, Newacheck PW. A national and state profile of leading health problems and health care quality for US children: key insurance disparities and across-state variations. Acad Pediatr 2011; 11:S22-33BethellCDKoganMDStricklandBBSchorELRobertsonJNewacheckPWA national and state profile of leading health problems and health care quality for US children: key insurance disparities and across-state variationsAcad Pediatr201111S223310.1016/j.acap.2010.08.01121570014Search in Google Scholar

Brown CE, Engelberg RA, Sharma R, Downey L, Fausto JA, Sibley J, Lober W, Khandelwal N, Loggers ET, Curtis JR. Race/Ethnicity, Socioeconomic Status, and Healthcare Intensity at the End of Life. J Palliat Med 2018; 21:13081316BrownCEEngelbergRASharmaRDowneyLFaustoJASibleyJLoberWKhandelwalNLoggersETCurtisJRRace/Ethnicity, Socioeconomic Status, and Healthcare Intensity at the End of LifeJ Palliat Med2018211308131610.1089/jpm.2018.0011615444729893618Search in Google Scholar

Hafeez H, Zeshan M, Tahir MA, Jahan N, Naveed S. Health Care Disparities Among Lesbian, Gay, Bisexual, and Transgender Youth: A Literature Review. Cureus 2017; 9:e1184HafeezHZeshanMTahirMAJahanNNaveedSHealth Care Disparities Among Lesbian, Gay, Bisexual, and Transgender Youth: A Literature ReviewCureus20179e118410.7759/cureus.1184547821528638747Search in Google Scholar

Quesada-Gonzalez D and Merkoci A. Nanomaterial-based devices for point-of-care diagnostic applications. Chem Soc Rev 2018; 47:4697-4709Quesada-GonzalezDMerkociANanomaterial-based devices for point-of-care diagnostic applicationsChem Soc Rev2018474697470910.1039/C7CS00837F29770813Search in Google Scholar

Mahato K, Maurya PK, Chandra P. Fundamentals and commercial aspects of nanobiosensors in point-of-care clinical diagnostics. 3 Biotech 2018; 8:149MahatoKMauryaPKChandraPFundamentals and commercial aspects of nanobiosensors in point-of-care clinical diagnostics3 Biotech2018814910.1007/s13205-018-1148-8582379429487778Search in Google Scholar

Nayak S, Blumenfeld NR, Laksanasopin T, Sia SK. Point-of-Care Diagnostics: Recent Developments in a Connected Age. Anal Chem 2017; 89:102-123NayakSBlumenfeldNRLaksanasopinTSiaSKPoint-of-Care Diagnostics: Recent Developments in a Connected AgeAnal Chem20178910212310.1021/acs.analchem.6b04630579387027958710Search in Google Scholar

Chan HN, Tan MJA, Wu H. Point-of-care testing: applications of 3D printing. Lab Chip 2017; 17:2713-2739ChanHNTanMJAWuHPoint-of-care testing: applications of 3D printingLab Chip2017172713273910.1039/C7LC00397H28702608Search in Google Scholar

Lee HN, Ryu JS, Shin C, Chung HJ. A Carbon-Dot-Based Fluorescent Nanosensor for Simple Visualization of Bacterial Nucleic Acids. Macromol Biosci 2017; 17:LeeHNRyuJSShinCChungHJA Carbon-Dot-Based Fluorescent Nanosensor for Simple Visualization of Bacterial Nucleic AcidsMacromol Biosci20171710.1002/mabi.20170008628614623Search in Google Scholar

Sun AC, Yao C, Venkatesh AG, Hall DA. An Efficient Power Harvesting Mobile Phone-Based Electrochemical Biosensor for Point-of-Care Health Monitoring. Sens Actuators B Chem 2016; 235:126-135SunACYaoCVenkateshAGHallDAAn Efficient Power Harvesting Mobile Phone-Based Electrochemical Biosensor for Point-of-Care Health MonitoringSens Actuators B Chem201623512613510.1016/j.snb.2016.05.010505513127725788Search in Google Scholar

Bhalla N, Jolly P, Formisano N, Estrela P. Introduction to biosensors. Essays Biochem 2016; 60:1-8BhallaNJollyPFormisanoNEstrelaPIntroduction to biosensorsEssays Biochem2016601810.1042/EBC20150001Search in Google Scholar

Bellan LM, Wu D, Langer RS. Current trends in nanobiosensor technology. Wiley Interdiscip Rev Nanomed Nano-biotechnol 2011; 3:229-46BellanLMWuDLangerRSCurrent trends in nanobiosensor technologyWiley Interdiscip Rev Nanomed Nano-biotechnol201132294610.1002/wnan.136Search in Google Scholar

Sagadevan S and Periasamy M. Recent Trends in Nanobiosensors and Their Applications - a Review. Rev Adv Mater Sci 2014; 36:62-69SagadevanSPeriasamyMRecent Trends in Nanobiosensors and Their Applications - a ReviewRev Adv Mater Sci2014366269Search in Google Scholar

Higgins IJ, Swain A, Turner APF. Principles and application of biosensors in microbiology. J Appl Bacteriol 1987; 63:93S-104SHigginsIJSwainATurnerAPFPrinciples and application of biosensors in microbiologyJ Appl Bacteriol19876393S104S10.1111/j.1365-2672.1987.tb03615.xSearch in Google Scholar

Cho IH, Lee J, Kim J, Kang MS, Paik JK, Ku S, Cho HM, Irudayaraj J, Kim DH. Current Technologies of Electrochemical Immunosensors: Perspective on Signal Amplification. Sensors (Basel) 2018; 18:ChoIHLeeJKimJKangMSPaikJKKuSChoHMIrudayarajJKimDHCurrent Technologies of Electrochemical Immunosensors: Perspective on Signal AmplificationSensors (Basel)20181810.3390/s18010207Search in Google Scholar

Grieshaber D, MacKenzie R, Voros J, Reimhult E. Electrochemical Biosensors - Sensor Principles and Architectures. Sensors-Basel 2008; 8:1400-1458GrieshaberDMacKenzieRVorosJReimhultEElectrochemical Biosensors - Sensor Principles and ArchitecturesSensors-Basel200881400145810.3390/s80314000Search in Google Scholar

Chen C and Wang J. Optical biosensors: an exhaustive and comprehensive review. Analyst 2020; 145:1605-1628ChenCWangJOptical biosensors: an exhaustive and comprehensive reviewAnalyst20201451605162810.1039/C9AN01998GSearch in Google Scholar

Ramsden JJ. Optical Biosensors. J Mol Recognit 1997; 10:109-120RamsdenJJOptical BiosensorsJ Mol Recognit19971010912010.1002/(SICI)1099-1352(199705/06)10:3<109::AID-JMR361>3.0.CO;2-DSearch in Google Scholar

Denmark DJ, Bustos-Perez X, Swain A, Phan M-H, Mohapatra S, Mohapatra SS. Readiness of Magnetic Nanobiosensors for Point-of-Care Commercialization. J Electron Mater 2019; 48:4749-4761DenmarkDJBustos-PerezXSwainAPhanM-HMohapatraSMohapatraSSReadiness of Magnetic Nanobiosensors for Point-of-Care CommercializationJ Electron Mater2019484749476110.1007/s11664-019-07275-7Search in Google Scholar

Giouroudi I and Kokkinis G. Recent Advances in Magnetic Microfluidic Biosensors. Nanomaterials (Basel) 2017; 7:GiouroudiIKokkinisGRecent Advances in Magnetic Microfluidic BiosensorsNanomaterials (Basel)2017710.3390/nano7070171Search in Google Scholar

Yakovleva M, Bhand S, Danielsson B. The enzyme thermistor--a realistic biosensor concept. A critical review. Anal Chim Acta 2013; 766:1-12YakovlevaMBhandSDanielssonBThe enzyme thermistor--a realistic biosensor concept. A critical reviewAnal Chim Acta201376611210.1016/j.aca.2012.12.004Search in Google Scholar

Xie B, Ramanathan K, Danielsson B. Mini / micro thermal biosensors and other related devices for biochemical / clinical analysis and monitoring. Trac-Trend Anal Chem 2000; 19:340-349XieBRamanathanKDanielssonBMini / micro thermal biosensors and other related devices for biochemical / clinical analysis and monitoringTrac-Trend Anal Chem20001934034910.1016/S0165-9936(99)00211-3Search in Google Scholar

Arlett JL, Myers EB, Roukes ML. Comparative advantages of mechanical biosensors. Nat Nanotechnol 2011; 6:203-15ArlettJLMyersEBRoukesMLComparative advantages of mechanical biosensorsNat Nanotechnol201162031510.1038/nnano.2011.44Search in Google Scholar

Willner I, Patolsky F, Weizmann Y, Willner B. Amplified detection of single-base mismatches in DNA using micro gravimetric quartz-crystal-microbalance transduction. Talanta 2002; 56:847-856WillnerIPatolskyFWeizmannYWillnerBAmplified detection of single-base mismatches in DNA using micro gravimetric quartz-crystal-microbalance transductionTalanta20025684785610.1016/S0039-9140(01)00658-0Search in Google Scholar

Conroy PJ, Hearty S, Leonard P, O’Kennedy RJ. Antibody production, design and use for biosensor-based applications. Semin Cell Dev Biol 2009; 20:10-26ConroyPJHeartySLeonardPO’KennedyRJAntibody production, design and use for biosensor-based applicationsSemin Cell Dev Biol200920102610.1016/j.semcdb.2009.01.01019429487Search in Google Scholar

Morales MA and Halpern JM. Guide to Selecting a Biorecognition Element for Biosensors. Bioconjug Chem 2018; 29:3231-3239MoralesMAHalpernJMGuide to Selecting a Biorecognition Element for BiosensorsBioconjug Chem2018293231323910.1021/acs.bioconjchem.8b00592641615430216055Search in Google Scholar

Dou L, Zhao B, Bu T, Zhang W, Huang Q, Yan L, Huang L, Wang Y, Wang J, Zhang D. Highly sensitive detection of a small molecule by a paired labels recognition system based lateral flow assay. Anal Bioanal Chem 2018; 410:3161-3170DouLZhaoBBuTZhangWHuangQYanLHuangLWangYWangJZhangDHighly sensitive detection of a small molecule by a paired labels recognition system based lateral flow assayAnal Bioanal Chem20184103161317010.1007/s00216-018-1003-029594429Search in Google Scholar

Morgan CL, Newman DJ, Price CP. Immunosensors: Technology and Opportunities in Laboratory Medicine. Clin Chem 1996; 42:193-209MorganCLNewmanDJPriceCPImmunosensors: Technology and Opportunities in Laboratory MedicineClin Chem19964219320910.1093/clinchem/42.2.193Search in Google Scholar

Smolinska-Kempisty K, Guerreiro A, Canfarotta F, Caceres C, Whitcombe MJ, Piletsky S. A comparison of the performance of molecularly imprinted polymer nanoparticles for small molecule targets and antibodies in the ELISA format. Sci Rep 2016; 6:37638Smolinska-KempistyKGuerreiroACanfarottaFCaceresCWhitcombeMJPiletskySA comparison of the performance of molecularly imprinted polymer nanoparticles for small molecule targets and antibodies in the ELISA formatSci Rep201663763810.1038/srep37638512161927883023Search in Google Scholar

Hopkins NAE, in Antibody Engineering for Biosensor Applications, ed. By Z. M. (Springer, New York, NY, 2010),HopkinsNAEin Antibody Engineering for Biosensor ApplicationsByZ. M.SpringerNew York, NY201010.1007/978-1-4419-0919-0_12Search in Google Scholar

Erturk G and Mattiasson B. Molecular Imprinting Techniques Used for the Preparation of Biosensors. Sensors (Basel) 2017; 17:ErturkGMattiassonBMolecular Imprinting Techniques Used for the Preparation of BiosensorsSensors (Basel)20171710.3390/s17020288533594028165419Search in Google Scholar

Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27:297-401WhitcombeMJKirschNNichollsIAMolecular imprinting science and technology: a survey of the literature for the years 2004-2011J Mol Recognit20142729740110.1002/jmr.234724700625Search in Google Scholar

Li R, Feng Y, Pan G, Liu L. Advances in Molecularly Imprinting Technology for Bioanalytical Applications. Sensors (Basel) 2019; 19:LiRFengYPanGLiuLAdvances in Molecularly Imprinting Technology for Bioanalytical ApplicationsSensors (Basel)20191910.3390/s19010177633893730621335Search in Google Scholar

Selvolini G and Marrazza G. MIP-Based Sensors: Promising New Tools for Cancer Biomarker Determination. Sensors (Basel) 2017; 17:SelvoliniGMarrazzaGMIP-Based Sensors: Promising New Tools for Cancer Biomarker DeterminationSensors (Basel)20171710.3390/s17040718542167828353669Search in Google Scholar

Safaryan AHM, Smith AM, Bedwell TS, Piletska EV, Canfarotta F, Piletsky SA. Optimisation of the preservation conditions for molecularly imprinted polymer nanoparticles specific for trypsin. Nanoscale Advances 2019; 1:3709-3714SafaryanAHMSmithAMBedwellTSPiletskaEVCanfarottaFPiletskySAOptimisation of the preservation conditions for molecularly imprinted polymer nanoparticles specific for trypsinNanoscale Advances201913709371410.1039/C9NA00327DSearch in Google Scholar

Chen L, Wang X, Lu W, Wu X, Li J. Molecular imprinting: perspectives and applications. Chem Soc Rev 2016; 45:2137-211ChenLWangXLuWWuXLiJMolecular imprinting: perspectives and applicationsChem Soc Rev201645213721110.1039/C6CS00061DSearch in Google Scholar

BelBruno JJ. Molecularly Imprinted Polymers. Chem Rev 2019; 119:94-119BelBrunoJJMolecularly Imprinted PolymersChem Rev20191199411910.1021/acs.chemrev.8b0017130246529Search in Google Scholar

Ge Y, Butler B, Mirza F, Habib-Ullah S, Fei D. Smart molecularly imprinted polymers: recent developments and applications. Macromol Rapid Commun 2013; 34:903-15GeYButlerBMirzaFHabib-UllahSFeiDSmart molecularly imprinted polymers: recent developments and applicationsMacromol Rapid Commun2013349031510.1002/marc.20130006923625770Search in Google Scholar

Wang C, Howell M, Raulji P, Davis Y, Mohapatra S. Preparation and Characterization of Molecularly Imprinted Polymeric Nanoparticles for Atrial Natriuretic Peptide (ANP). Adv Funct Mater 2011; 21:4423-4429WangCHowellMRauljiPDavisYMohapatraSPreparation and Characterization of Molecularly Imprinted Polymeric Nanoparticles for Atrial Natriuretic Peptide (ANP)Adv Funct Mater2011214423442910.1002/adfm.201100946358321823459692Search in Google Scholar

Huang H, Wang X, Ge H, Xu M. Multifunctional Magnetic Cellulose Surface-Imprinted Microspheres for Highly Selective Adsorption of Artesunate. ACS Sustainable Chemistry & Engineering 2016; 4:3334-3343HuangHWangXGeHXuMMultifunctional Magnetic Cellulose Surface-Imprinted Microspheres for Highly Selective Adsorption of ArtesunateACS Sustainable Chemistry & Engineering201643334334310.1021/acssuschemeng.6b00386Search in Google Scholar

Wang HY, Cao PP, He ZY, He XW, Li WY, Li YH, Zhang YK. Targeted imaging and targeted therapy of breast cancer cells via fluorescent double template-imprinted polymer coated silicon nanoparticles by an epitope approach. Nanoscale 2019; 11:17018-17030WangHYCaoPPHeZYHeXWLiWYLiYHZhangYKTargeted imaging and targeted therapy of breast cancer cells via fluorescent double template-imprinted polymer coated silicon nanoparticles by an epitope approachNanoscale201911170181703010.1039/C9NR04655K31502627Search in Google Scholar

Kubo T, Tachibana K, Naito T, Mukai S, Akiyoshi K, Balachandran J, Otsuka K. Magnetic Field Stimuli-Sensitive Drug Release Using a Magnetic Thermal Seed Coated with Thermal-Responsive Molecularly Imprinted Polymer. ACS Biomaterials Science & Engineering 2018; 5:759-767KuboTTachibanaKNaitoTMukaiSAkiyoshiKBalachandranJOtsukaKMagnetic Field Stimuli-Sensitive Drug Release Using a Magnetic Thermal Seed Coated with Thermal-Responsive Molecularly Imprinted PolymerACS Biomaterials Science & Engineering2018575976710.1021/acsbiomaterials.8b0140133405837Search in Google Scholar

Griffete N, Fresnais J, Espinosa A, Wilhelm C, Bee A, Menager C. Design of magnetic molecularly imprinted polymer nanoparticles for controlled release of doxorubicin under an alternative magnetic field in athermal conditions. Nanoscale 2015; 7:18891-6GriffeteNFresnaisJEspinosaAWilhelmCBeeAMenagerCDesign of magnetic molecularly imprinted polymer nanoparticles for controlled release of doxorubicin under an alternative magnetic field in athermal conditionsNanoscale2015718891610.1039/C5NR06133DSearch in Google Scholar

Liu LT, Chen MJ, Yang HL, Huang ZJ, Tang Q, Chow CF, Gong CB, Zu MH, Xiao B. An NIR-light-responsive surface molecularly imprinted polymer for photoregulated drug release in aqueous solution through porcine tissue. Mater Sci Eng C Mater Biol Appl 2020; 106:110253LiuLTChenMJYangHLHuangZJTangQChowCFGongCBZuMHXiaoBAn NIR-light-responsive surface molecularly imprinted polymer for photoregulated drug release in aqueous solution through porcine tissueMater Sci Eng C Mater Biol Appl202010611025310.1016/j.msec.2019.11025331753332Search in Google Scholar

Cruz JC, de Faria HD, Figueiredo EC, Queiroz MEC. Restricted access carbon nanotube for microextraction by packed sorbent to determine antipsychotics in plasma samples by high-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2020; 412:2465-2475CruzJCde FariaHDFigueiredoECQueirozMECRestricted access carbon nanotube for microextraction by packed sorbent to determine antipsychotics in plasma samples by high-performance liquid chromatography-tandem mass spectrometryAnal Bioanal Chem20204122465247510.1007/s00216-020-02464-432025768Search in Google Scholar

Chen L, Zhang X, Xu Y, Du X, Sun X, Sun L, Wang H, Zhao Q, Yu A, Zhang H, Ding L. Determination of fluoroquinolone antibiotics in environmental water samples based on magnetic molecularly imprinted polymer extraction followed by liquid chromatography-tandem mass spectrometry. Anal Chim Acta 2010; 662:31-8ChenLZhangXXuYDuXSunXSunLWangHZhaoQYuAZhangHDingLDetermination of fluoroquinolone antibiotics in environmental water samples based on magnetic molecularly imprinted polymer extraction followed by liquid chromatography-tandem mass spectrometryAnal Chim Acta201066231810.1016/j.aca.2010.01.00120152262Search in Google Scholar

Xie H, Ji W, Liu D, Liu W, Wang D, Lv R, Wang X. Surface molecularly imprinted polymers with dummy templates for the separation of dencichine from Panax notoginseng. RSC Advances 2015; 5:48885-48892XieHJiWLiuDLiuWWangDLvRWangXSurface molecularly imprinted polymers with dummy templates for the separation of dencichine from Panax notoginsengRSC Advances20155488854889210.1039/C5RA06749ASearch in Google Scholar

Zhao WR, Xu YH, Kang TF, Zhang X, Liu H, Ming AJ, Cheng SY, Wei F. Sandwich magnetically imprinted immunosensor for electrochemiluminescence ultrasensing diethylstilbestrol based on enhanced luminescence of Ru@ SiO2 by CdTe@ZnS quantum dots. Biosens Bioelectron 2020; 155:112102ZhaoWRXuYHKangTFZhangXLiuHMingAJChengSYWeiFSandwich magnetically imprinted immunosensor for electrochemiluminescence ultrasensing diethylstilbestrol based on enhanced luminescence of Ru@ SiO2 by CdTe@ZnS quantum dotsBiosens Bioelectron202015511210210.1016/j.bios.2020.11210232090874Search in Google Scholar

Lu YC, Guo MH, Mao JH, Xiong XH, Liu YJ, Li Y. Preparation of core-shell magnetic molecularly imprinted polymer nanoparticle for the rapid and selective enrichment of trace diuron from complicated matrices. Ecotoxicol Environ Saf 2019; 177:66-76LuYCGuoMHMaoJHXiongXHLiuYJLiYPreparation of core-shell magnetic molecularly imprinted polymer nanoparticle for the rapid and selective enrichment of trace diuron from complicated matricesEcotoxicol Environ Saf2019177667610.1016/j.ecoenv.2019.03.11730974245Search in Google Scholar

Ndunda EN and Mizaikoff B. Molecularly imprinted polymers for the analysis and removal of polychlorinated aromatic compounds in the environment: a review. Analyst 2016; 141:3141-56NdundaENMizaikoffBMolecularly imprinted polymers for the analysis and removal of polychlorinated aromatic compounds in the environment: a reviewAnalyst201614131415610.1039/C6AN00293ESearch in Google Scholar

Bumbudsanpharoke N and Ko S. Nanomaterial-based optical indicators: Promise, opportunities, and challenges in the development of colorimetric systems for intelligent packaging. Nano Research 2019; 12:489-500BumbudsanpharokeNKoSNanomaterial-based optical indicators: Promise, opportunities, and challenges in the development of colorimetric systems for intelligent packagingNano Research20191248950010.1007/s12274-018-2237-zSearch in Google Scholar

Gutiérrez TJ, Ponce AG, Alvarez VA. Nano-clays from natural and modified montmorillonite with and without added blueberry extract for active and intelligent food nanopackaging materials. Mater Chem Phys 2017; 194:283-292GutiérrezTJPonceAGAlvarezVANano-clays from natural and modified montmorillonite with and without added blueberry extract for active and intelligent food nanopackaging materialsMater Chem Phys201719428329210.1016/j.matchemphys.2017.03.052Search in Google Scholar

Jayakumar A, K VH, T SS, Joseph M, Mathew S, GP, Nair IC, E KR. Starch-PVA composite films with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food packaging application. Int J Biol Macromol 2019; 136:395-403JayakumarAKVHTSSJosephMMathewSNairICEKRStarch-PVA composite films with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food packaging applicationInt J Biol Macromol201913639540310.1016/j.ijbiomac.2019.06.01831173829Search in Google Scholar

Nguyen-Tri P, Tran HN, Plamondon CO, Tuduri L, Vo D-VN, Nanda S, Mishra A, Chao H-P, Bajpai AK. Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: A review. Progress in Organic Coatings 2019; 132:235-256Nguyen-TriPTranHNPlamondonCOTuduriLVoD-VNNandaSMishraAChaoH-PBajpaiAKRecent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: A reviewProgress in Organic Coatings201913223525610.1016/j.porgcoat.2019.03.042Search in Google Scholar

Yamauchi G, Riko Y, Yasuno Y, Shimizu T, Funakoshi N. Water-repellent coating for mobile phone microphones. Surface Coatings International Part B-Coatings Transactions 2005; 88:281-283YamauchiGRikoYYasunoYShimizuTFunakoshiNWater-repellent coating for mobile phone microphonesSurface Coatings International Part B-Coatings Transactions20058828128310.1007/BF02699585Search in Google Scholar

Sun J, Shi X, Du Y, Wu Y. A robust, flexible superhydrophobic sheet fabricated by in situ growth of micro-nano-SiO2 particles from cured silicone rubber. Journal of Sol-Gel Science and Technology 2019; 91:208-215SunJShiXDuYWuYA robust, flexible superhydrophobic sheet fabricated by in situ growth of micro-nano-SiO2 particles from cured silicone rubberJournal of Sol-Gel Science and Technology20199120821510.1007/s10971-019-05010-6Search in Google Scholar

Peters RJB, Bouwmeester H, Gottardo S, Amenta V, Arena M, Brandhoff P, Marvin HJP, Mech A, Moniz FB, Pesudo LQ, Rauscher H, Schoonjans R, Undas AK, Vettori MV, Weigel S, Aschberger K. Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci Technol 2016; 54:155-164PetersRJBBouwmeesterHGottardoSAmentaVArenaMBrandhoffPMarvinHJPMechAMonizFBPesudoLQRauscherHSchoonjansRUndasAKVettoriMVWeigelSAschbergerKNanomaterials for products and application in agriculture, feed and foodTrends Food Sci Technol20165415516410.1016/j.tifs.2016.06.008Search in Google Scholar

Riedle S, Wills JW, Miniter M, Otter DE, Singh H, Brown AP, Micklethwaite S, Rees P, Jugdaohsingh R, Roy NC, Hewitt RE, Powell JJ. A Murine Oral-Exposure Model for Nano- and Micro-Particulates: Demonstrating Human Relevance with Food-Grade Titanium Dioxide. Small 2020; 16:e2000486RiedleSWillsJWMiniterMOtterDESinghHBrownAPMicklethwaiteSReesPJugdaohsinghRRoyNCHewittREPowellJJA Murine Oral-Exposure Model for Nano- and Micro-Particulates: Demonstrating Human Relevance with Food-Grade Titanium DioxideSmall202016e200048610.1002/smll.20200048632363770Search in Google Scholar

Ojagh SM and Hasani S. Characteristics and oxidative stability of fish oil nano-liposomes and its application in functional bread. Journal of Food Measurement and Characterization 2018; 12:1084-1092OjaghSMHasaniSCharacteristics and oxidative stability of fish oil nano-liposomes and its application in functional breadJournal of Food Measurement and Characterization2018121084109210.1007/s11694-018-9724-5Search in Google Scholar

Ahmadi MH, Ghazvini M, Alhuyi Nazari M, Ahmadi MA, Pourfayaz F, Lorenzini G, Ming T. Renewable energy harvesting with the application of nanotechnology: A review. International Journal of Energy Research 2018; 43:1387-1410AhmadiMHGhazviniMAlhuyi NazariMAhmadiMAPourfayazFLorenziniGMingTRenewable energy harvesting with the application of nanotechnology: A reviewInternational Journal of Energy Research2018431387141010.1002/er.4282Search in Google Scholar

Kawawaki T, Negishi Y, Kawasaki H. Photo/electrocatalysis and photosensitization using metal nanoclusters for green energy and medical applications. Nanoscale Advances 2020; 2:17-36KawawakiTNegishiYKawasakiHPhoto/electrocatalysis and photosensitization using metal nanoclusters for green energy and medical applicationsNanoscale Advances20202173610.1039/C9NA00583HSearch in Google Scholar

Thaver Y, Oseni SO, Kaviyarasu K, Dwivedi RP, Mola GT. Metal nano-composite assisted photons harvesting in thin film organic photovoltaic. Physica B: Condensed Matter 2020; 582:411844ThaverYOseniSOKaviyarasuKDwivediRPMolaGTMetal nano-composite assisted photons harvesting in thin film organic photovoltaicPhysica B: Condensed Matter202058241184410.1016/j.physb.2019.411844Search in Google Scholar

Aziz ZAA, Mohd-Nasir H, Ahmad A, Mohd Setapar SH, Peng WL, Chuo SC, Khatoon A, Umar K, Yaqoob AA, Mohamad Ibrahim MN. Role of Nanotechnology for Design and Development of Cosmeceutical: Application in Makeup and Skin Care. Front Chem 2019; 7:739AzizZAAMohd-NasirHAhmadAMohd SetaparSHPengWLChuoSCKhatoonAUmarKYaqoobAAMohamad IbrahimMNRole of Nanotechnology for Design and Development of Cosmeceutical: Application in Makeup and Skin CareFront Chem2019773910.3389/fchem.2019.00739686396431799232Search in Google Scholar

Mohd Taib SH, Abd Gani SS, Ab Rahman MZ, Basri M, Ismail A, Shamsudin R. Formulation and process optimizations of nano-cosmeceuticals containing purified swiftlet nest. RSC Advances 2015; 5:42322-42328Mohd TaibSHAbd GaniSSAb RahmanMZBasriMIsmailAShamsudinRFormulation and process optimizations of nano-cosmeceuticals containing purified swiftlet nestRSC Advances20155423224232810.1039/C5RA03008KSearch in Google Scholar

Kalouta K, Eleni P, Boukouvalas C, Vassilatou K, Krokida M. Dynamic mechanical analysis of novel cosmeceutical facial creams containing nano-encapsulated natural plant and fruit extracts. J Cosmet Dermatol 2020; 19:1146-1154KaloutaKEleniPBoukouvalasCVassilatouKKrokidaMDynamic mechanical analysis of novel cosmeceutical facial creams containing nano-encapsulated natural plant and fruit extractsJ Cosmet Dermatol2020191146115410.1111/jocd.1313331529673Search in Google Scholar

Denmark DJ, Bradley J, Mukherjee D, Alonso J, Shakespeare S, Bernal N, Phan MH, Srikanth H, Witanachchi S, Mukherjee P. Remote triggering of thermoresponsive PNIPAM by iron oxide nanoparticles. Rsc Adv 2016; 6:5641-5652DenmarkDJBradleyJMukherjeeDAlonsoJShakespeareSBernalNPhanMHSrikanthHWitanachchiSMukherjeePRemote triggering of thermoresponsive PNIPAM by iron oxide nanoparticlesRsc Adv201665641565210.1039/C5RA21617FSearch in Google Scholar

Denmark DJ, Hyde RH, Gladney C, Phan MH, Bisht KS, Srikanth H, Mukherjee P, Witanachchi S. Photopolymerization-based synthesis of iron oxide nanoparticle embedded PNIPAM nanogels for biomedical applications. Drug Deliv 2017; 24:1317-1324DenmarkDJHydeRHGladneyCPhanMHBishtKSSrikanthHMukherjeePWitanachchiSPhotopolymerization-based synthesis of iron oxide nanoparticle embedded PNIPAM nanogels for biomedical applicationsDrug Deliv2017241317132410.1080/10717544.2017.1373164824111128906151Search in Google Scholar

Lim B-K, Tighe EC, Kong SD. The use of magnetic targeting for drug delivery into cardiac myocytes. Journal of Magnetism and Magnetic Materials 2019; 473:21-25LimB-KTigheECKongSDThe use of magnetic targeting for drug delivery into cardiac myocytesJournal of Magnetism and Magnetic Materials2019473212510.1016/j.jmmm.2018.09.118Search in Google Scholar

Jazayeri MH, Amani H, Pourfatollah AA, Pazoki-Toroudi H, Sedighimoghaddam B. Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sensing and Bio-Sensing Research 2016; 9:17-22JazayeriMHAmaniHPourfatollahAAPazoki-ToroudiHSedighimoghaddamBVarious methods of gold nanoparticles (GNPs) conjugation to antibodiesSensing and Bio-Sensing Research20169172210.1016/j.sbsr.2016.04.002Search in Google Scholar

Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: A review. Talanta 2018; 184:537-556ElahiNKamaliMBaghersadMHRecent biomedical applications of gold nanoparticles: A reviewTalanta201818453755610.1016/j.talanta.2018.02.08829674080Search in Google Scholar

Saleh M, Soliman H, Haenen O, El-Matbouli M. Antibody-coated gold nanoparticles immunoassay for direct detection of Aeromonas salmonicida in fish tissues. J Fish Dis 2011; 34:845-52SalehMSolimanHHaenenOEl-MatbouliMAntibody-coated gold nanoparticles immunoassay for direct detection of Aeromonas salmonicida in fish tissuesJ Fish Dis2011348455210.1111/j.1365-2761.2011.01302.x21988356Search in Google Scholar

Kim KB, Kim YW, Lim SK, Roh TH, Bang DY, Choi SM, Lim DS, Kim YJ, Baek SH, Kim MK, Seo HS, Kim MH, Kim HS, Lee JY, Kacew S, Lee BM. Risk assessment of zinc oxide, a cosmetic ingredient used as a UV filter of sunscreens. J Toxicol Environ Health B Crit Rev 2017; 20:155-182KimKBKimYWLimSKRohTHBangDYChoiSMLimDSKimYJBaekSHKimMKSeoHSKimMHKimHSLeeJYKacewSLeeBMRisk assessment of zinc oxide, a cosmetic ingredient used as a UV filter of sunscreensJ Toxicol Environ Health B Crit Rev20172015518210.1080/10937404.2017.129051628509652Search in Google Scholar

Sanches PL, Souza W, Gemini-Piperni S, Rossi AL, Scapin S, Midlej V, Sade Y, Leme AFP, Benchimol M, Rocha LA, Carias RBV, Borojevic R, Granjeiro JM, Ribeiro AR. Rutile nano–bio-interactions mediate dissimilar intracellular destiny in human skin cells. Nanoscale Advances 2019; 1:2216-2228SanchesPLSouzaWGemini-PiperniSRossiALScapinSMidlejVSadeYLemeAFPBenchimolMRochaLACariasRBVBorojevicRGranjeiroJMRibeiroARRutile nano–bio-interactions mediate dissimilar intracellular destiny in human skin cellsNanoscale Advances201912216222810.1039/C9NA00078JSearch in Google Scholar

Irshad M, Iqbal N, Mujahid A, Afzal A, Hussain T, Sharif A, Ahmad E, Athar MM. Molecularly Imprinted Nano-materials for Sensor Applications. Nanomaterials (Basel) 2013; 3:615-637IrshadMIqbalNMujahidAAfzalAHussainTSharifAAhmadEAtharMMMolecularly Imprinted Nano-materials for Sensor ApplicationsNanomaterials (Basel)2013361563710.3390/nano3040615530459628348356Search in Google Scholar

Komiyama M, Mori T, Ariga K. Molecular Imprinting: Materials Nanoarchitectonics with Molecular Information. Bull Chem Soc Jpn 2018; 91:1075-1111KomiyamaMMoriTArigaKMolecular Imprinting: Materials Nanoarchitectonics with Molecular InformationBull Chem Soc Jpn2018911075111110.1246/bcsj.20180084Search in Google Scholar

Jain KK, The Handbook Of Nanomedicine - 3rd ed., 3 (Humana Press, 2017), pp.JainKKThe Handbook Of Nanomedicine - 3rd ed3Humana Press201710.1007/978-1-4939-6966-1Search in Google Scholar

Burgess R, Understanding Nanomedicine - An Introductory Textbook, (Pan Stanford Publishing Pte. Ltd., Singapore, 2012), pp.BurgessRUnderstanding Nanomedicine - An Introductory TextbookPan Stanford Publishing Pte. LtdSingapore201210.1201/b12299Search in Google Scholar

Roy H, Nayak BS, Rahaman SA, Characterization and Biology of Nanomaterials for Drug Delivery - Nanoscience and Nanotechnology in Drug Delivery, (Elsevier, Amsterdam, 2019), pp. 447-456.RoyHNayakBSRahamanSACharacterization and Biology of Nanomaterials for Drug Delivery - Nanoscience and Nanotechnology in Drug DeliveryElsevierAmsterdam2019447456Search in Google Scholar

Holzinger M, Le Goff A, Cosnier S. Nanomaterials for biosensing applications: a review. Front Chem 2014; 2:63HolzingerMLe GoffACosnierSNanomaterials for biosensing applications: a reviewFront Chem201426310.3389/fchem.2014.00063414525625221775Search in Google Scholar

Moreno-Bondi M, Navarro-Villoslada F, Benito-Pena E, Urraca J. Molecularly Imprinted Polymers as Selective Recognition Elements in Optical Sensing. Curr Anal Chem 2008; 4:316-340Moreno-BondiMNavarro-VillosladaFBenito-PenaEUrracaJMolecularly Imprinted Polymers as Selective Recognition Elements in Optical SensingCurr Anal Chem2008431634010.2174/157341108785914925Search in Google Scholar

Niu M, Pham-Huy C, He H. Core-shell nanoparticles coated with molecularly imprinted polymers: a review. Microchim Acta 2016; 183:2677-2695NiuMPham-HuyCHeHCore-shell nanoparticles coated with molecularly imprinted polymers: a reviewMicrochim Acta20161832677269510.1007/s00604-016-1930-4Search in Google Scholar

Poma A, Turner AP, Piletsky SA. Advances in the manufacture of MIP nanoparticles. Trends Biotechnol 2010; 28:629-37PomaATurnerAPPiletskySAAdvances in the manufacture of MIP nanoparticlesTrends Biotechnol2010286293710.1016/j.tibtech.2010.08.00620880600Search in Google Scholar

Yoshimatsu K, Reimhult K, Krozer A, Mosbach K, Sode K, Ye L. Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: the control of particle size suitable for different analytical applications. Anal Chim Acta 2007; 584:112-21YoshimatsuKReimhultKKrozerAMosbachKSodeKYeLUniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: the control of particle size suitable for different analytical applicationsAnal Chim Acta20075841122110.1016/j.aca.2006.11.00417386593Search in Google Scholar

Beyazit S, Tse Sum Bui B, Haupt K, Gonzato C. Molecularly imprinted polymer nanomaterials and nanocomposites by controlled/living radical polymerization. Progress in Polymer Science 2016; 62:1-21BeyazitSTse Sum BuiBHauptKGonzatoCMolecularly imprinted polymer nanomaterials and nanocomposites by controlled/living radical polymerizationProgress in Polymer Science20166212110.1016/j.progpolymsci.2016.04.001Search in Google Scholar

Li X, Liu H, Deng Z, Chen W, Li T, Zhang Y, Zhang Z, He Y, Tan Z, Zhong S. PEGylated Thermo-Sensitive Bionic Magnetic Core-Shell Structure Molecularly Imprinted Polymers Based on Halloysite Nanotubes for Specific Adsorption and Separation of Bovine Serum Albumin. Polymers (Basel) 2020; 12:LiXLiuHDengZChenWLiTZhangYZhangZHeYTanZZhongSPEGylated Thermo-Sensitive Bionic Magnetic Core-Shell Structure Molecularly Imprinted Polymers Based on Halloysite Nanotubes for Specific Adsorption and Separation of Bovine Serum AlbuminPolymers (Basel)20201210.3390/polym12030536718286932131435Search in Google Scholar

Chen L, Xu S, Li J. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev 2011; 40:2922-42ChenLXuSLiJRecent advances in molecular imprinting technology: current status, challenges and highlighted applicationsChem Soc Rev20114029224210.1039/c0cs00084a21359355Search in Google Scholar

Fang GZ, Feng JJ, Yan YF, Liu CC, Wang S. Highly Selective Determination of Chrysoidine in Foods Through a Surface Molecularly Imprinted Sol-Gel Polymer Solid-Phase Extraction Coupled with HPLC. Food Analytical Methods 2014; 7:345-351FangGZFengJJYanYFLiuCCWangSHighly Selective Determination of Chrysoidine in Foods Through a Surface Molecularly Imprinted Sol-Gel Polymer Solid-Phase Extraction Coupled with HPLCFood Analytical Methods2014734535110.1007/s12161-013-9632-6Search in Google Scholar

Chen W, Ma Y, Pan JM, Meng ZH, Pan GQ, Sellergren B. Molecularly Imprinted Polymers with Stimuli-Responsive Affinity: Progress and Perspectives. Polymers 2015; 7:1689-1715ChenWMaYPanJMMengZHPanGQSellergrenBMolecularly Imprinted Polymers with Stimuli-Responsive Affinity: Progress and PerspectivesPolymers201571689171510.3390/polym7091478Search in Google Scholar

Dinc M, Esen C, Mizaikoff B. Recent advances on core– shell magnetic molecularly imprinted polymers for bio-macromolecules. TrAC Trends in Analytical Chemistry 2019; 114:202-217DincMEsenCMizaikoffBRecent advances on core– shell magnetic molecularly imprinted polymers for bio-macromoleculesTrAC Trends in Analytical Chemistry201911420221710.1016/j.trac.2019.03.008Search in Google Scholar

Miyata T, Jige M, Nakaminami T, Uragami T. Tumor marker-responsive behavior of gels prepared by biomolecular imprinting. Proc Natl Acad Sci US A 2006; 103:1190-1193MiyataTJigeMNakaminamiTUragamiTTumor marker-responsive behavior of gels prepared by biomolecular imprintingProc Natl Acad Sci US A20061031190119310.1073/pnas.0506786103136052516432230Search in Google Scholar

Watanabe M, Akahoshi T, Tabata Y, Nakayama D. Molecular Specific Swelling Change of Hydrogels in Accordance with the Concentration of Guest Molecules. J Am Chem Soc 1998; 120:5577-5578WatanabeMAkahoshiTTabataYNakayamaDMolecular Specific Swelling Change of Hydrogels in Accordance with the Concentration of Guest MoleculesJ Am Chem Soc19981205577557810.1021/ja973070nSearch in Google Scholar

Hien Nguyen T and Ansell RJ. N-isopropylacrylamide as a functional monomer for noncovalent molecular imprinting. J Mol Recognit 2012; 25:1-10HienNguyen TAnsellRJN-isopropylacrylamide as a functional monomer for noncovalent molecular imprintingJ Mol Recognit20122511010.1002/jmr.116322213445Search in Google Scholar

Smolinska-Kempisty K, Ahmad OS, Guerreiro A, Karim K, Piletska E, Piletsky S. New potentiometric sensor based on molecularly imprinted nanoparticles for cocaine detection. Biosens Bioelectron 2017; 96:49-54Smolinska-KempistyKAhmadOSGuerreiroAKarimKPiletskaEPiletskySNew potentiometric sensor based on molecularly imprinted nanoparticles for cocaine detectionBiosens Bioelectron201796495410.1016/j.bios.2017.04.03428472729Search in Google Scholar

Ndunda EN. Molecularly imprinted polymers-A closer look at the control polymer used in determining the imprinting effect: A mini review. J Mol Recognit 2020.e2855NdundaENMolecularly imprinted polymers-A closer look at the control polymer used in determining the imprinting effect: A mini reviewJ Mol Recognit2020e285510.1002/jmr.285532529728Search in Google Scholar

Lu Z, Li Y, Liu T, Wang G, Sun M, Jiang Y, He H, Wang Y, Zou P, Wang X, Zhao Q, Rao H. A dual-template imprinted polymer electrochemical sensor based on AuNPs and nitrogen-doped graphene oxide quantum dots coated on NiS2/biomass carbon for simultaneous determination of dopamine and chlorpromazine. Chem Eng J 2020; 389:124417LuZLiYLiuTWangGSunMJiangYHeHWangYZouPWangXZhaoQRaoHA dual-template imprinted polymer electrochemical sensor based on AuNPs and nitrogen-doped graphene oxide quantum dots coated on NiS2/biomass carbon for simultaneous determination of dopamine and chlorpromazineChem Eng J202038912441710.1016/j.cej.2020.124417Search in Google Scholar

Wu Y, Deng P, Tian Y, Ding Z, Li G, Liu J, Zuberi Z, He Q. Rapid recognition and determination of tryptophan by carbon nanotubes and molecularly imprinted polymer-modified glassy carbon electrode. Bioelectrochemistry 2020; 131:107393WuYDengPTianYDingZLiGLiuJZuberiZHeQRapid recognition and determination of tryptophan by carbon nanotubes and molecularly imprinted polymer-modified glassy carbon electrodeBioelectrochemistry202013110739310.1016/j.bioelechem.2019.10739331698180Search in Google Scholar

Rebelo T, Costa R, Brandao A, Silva AF, Sales MGF, Pereira CM. Molecularly imprinted polymer SPE sensor for analysis of CA-125 on serum. Anal Chim Acta 2019; 1082:126135RebeloTCostaRBrandaoASilvaAFSalesMGFPereiraCMMolecularly imprinted polymer SPE sensor for analysis of CA-125 on serumAnal Chim Acta2019108212613510.1016/j.aca.2019.07.05031472701Search in Google Scholar

Wang Y, Li H, Wang X, Wang Z, Wang M, Li Y, Wang Q. Preparation of a high-performance magnetic molecularly imprinted sensor for SERS detection of cyfluthrin in river. J Raman Spectrosc 2019.WangYLiHWangXWangZWangMLiYWangQPreparation of a high-performance magnetic molecularly imprinted sensor for SERS detection of cyfluthrin in riverJ Raman Spectrosc201910.1002/jrs.5598Search in Google Scholar

Hussain M, Kotova K, Lieberzeit PA. Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM. Sensors (Basel) 2016; 16:HussainMKotovaKLieberzeitPAMolecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCMSensors (Basel)20161610.3390/s16071011497006127376287Search in Google Scholar

Cennamo N, Zeni L, Pesavento M, Marchetti S, Marletta V, Baglio S, Graziani S, Pistorio A, Ando B. A Novel Sensing Methodology to Detect Furfural in Water, Exploiting MIPs, and Inkjet-Printed Optical Waveguides. IEEE Transactions on Instrumentation and Measurement 2019; 68:1582-1589CennamoNZeniLPesaventoMMarchettiSMarlettaVBaglioSGrazianiSPistorioAAndoBA Novel Sensing Methodology to Detect Furfural in Water, Exploiting MIPs, and Inkjet-Printed Optical WaveguidesIEEE Transactions on Instrumentation and Measurement2019681582158910.1109/TIM.2018.2879170Search in Google Scholar

Zhao P, Liu H, Zhang L, Zhu P, Ge S, Yu J. Paper-Based SERS Sensing Platform Based on 3D Silver Dendrites and Molecularly Imprinted Identifier Sandwich Hybrid for Neonicotinoid Quantification. ACS Appl Mater Interfaces 2020; 12:8845-8854ZhaoPLiuHZhangLZhuPGeSYuJPaper-Based SERS Sensing Platform Based on 3D Silver Dendrites and Molecularly Imprinted Identifier Sandwich Hybrid for Neonicotinoid QuantificationACS Appl Mater Interfaces2020128845885410.1021/acsami.9b2034131989810Search in Google Scholar

Chen S, Gan N, Zhang H, Hu F, Li T, Cui H, Cao Y, Jiang Q. A Portable and Antibody-free Sandwich Assay for Determination of Chloramphenicol in Food Based on a Personal Glucose Meter. Anal Bioanal Chem 2015; 407:2499-2507ChenSGanNZhangHHuFLiTCuiHCaoYJiangQA Portable and Antibody-free Sandwich Assay for Determination of Chloramphenicol in Food Based on a Personal Glucose MeterAnal Bioanal Chem20154072499250710.1007/s00216-015-8478-825644521Search in Google Scholar

National Nanotechnology Initiative Glossary. https://www.nano.gov/about-nni/glossary Accessed June 5, 2020.National Nanotechnology Initiative Glossaryhttps://www.nano.gov/about-nni/glossaryAccessed June 52020Search in Google Scholar

Sefcovicova J and Tkac J. Application of nanomaterials in microbial-cell biosensor constructions. Chem Pap 2015; 69:42-53SefcovicovaJTkacJApplication of nanomaterials in microbial-cell biosensor constructionsChem Pap201569425310.2478/s11696-014-0602-2Search in Google Scholar

Nichols G, Byard S, Bloxham MJ, Botterill J, Dawson NJ, Dennis A, Diart V, North NC, Sherwood JD. A Review of the Terms Agglomerate and Aggregate with a Recommendation for Nomenclature Used in Powder and Particle Characterization. J Pharm Sci 2002; 91:2103-2109NicholsGByardSBloxhamMJBotterillJDawsonNJDennisADiartVNorthNCSherwoodJDA Review of the Terms Agglomerate and Aggregate with a Recommendation for Nomenclature Used in Powder and Particle CharacterizationJ Pharm Sci2002912103210910.1002/jps.1019112226837Search in Google Scholar

Dazon C, Witschger O, Bau S, Fierro V, Llewellyn PL. Toward an operational methodology to identify industrial-scaled nanomaterial powders with the volume specific surface area criterion. Nanoscale Advances 2019; 1:3232-3242DazonCWitschgerOBauSFierroVLlewellynPLToward an operational methodology to identify industrial-scaled nanomaterial powders with the volume specific surface area criterionNanoscale Advances201913232324210.1039/C9NA00010KSearch in Google Scholar

Tran QH, Nguyen VQ, Le A-T. Corrigendum: Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives (Adv. Nat. Sci: Nanosci. Nanotechnol 4033001). Advances in Natural Sciences: Nanoscience and Nanotechnology 2018; 9:049501TranQHNguyenVQLeA-TCorrigendum: Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives (Adv. Nat. Sci: Nanosci. Nanotechnol 4033001)Advances in Natural Sciences: Nanoscience and Nanotechnology2018904950110.1088/2043-6254/aad12bSearch in Google Scholar

Wang X, Sun W, Yang W, Gao S, Sun C, Li Q. Mesoporous silica-protected silver nanoparticle disinfectant with controlled Ag+ ion release, efficient magnetic separation, and effective antibacterial activity. Nanoscale Advances 2019; 1:840-848WangXSunWYangWGaoSSunCLiQMesoporous silica-protected silver nanoparticle disinfectant with controlled Ag+ ion release, efficient magnetic separation, and effective antibacterial activityNanoscale Advances2019184084810.1039/C8NA00275DSearch in Google Scholar

Iravani S, Korbekandi H, Mirmohammadi S, B Z. Synthesis of silver nanoparticles: chemical, physical, and biological methods. Res Pharm Sci 2014; 9:385-406IravaniSKorbekandiHMirmohammadiSB Z. Synthesis of silver nanoparticles: chemical, physical, and biological methodsRes Pharm Sci20149385406Search in Google Scholar

Coll C, Notter D, Gottschalk F, Sun T, Som C, Nowack B. Probabilistic environmental risk assessment of five nano-materials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Nanotoxicology 2016; 10:436-44CollCNotterDGottschalkFSunTSomCNowackBProbabilistic environmental risk assessment of five nano-materials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes)Nanotoxicology2016104364410.3109/17435390.2015.107381226554717Search in Google Scholar

Recordati C, De Maglie M, Bianchessi S, Argentiere S, Cella C, Mattiello S, Cubadda F, Aureli F, D’Amato M, Raggi A, Lenardi C, Milani P, Scanziani E. Tissue distribution and acute toxicity of silver after single intravenous administration in mice: nano-specific and size-dependent effects. Part Fibre Toxicol 2016; 13:12RecordatiCDe MaglieMBianchessiSArgentiereSCellaCMattielloSCubaddaFAureliFD’AmatoMRaggiALenardiCMilaniPScanzianiETissue distribution and acute toxicity of silver after single intravenous administration in mice: nano-specific and size-dependent effectsPart Fibre Toxicol2016131210.1186/s12989-016-0124-x477251626926244Search in Google Scholar

Yao Z, Yang X, Liu X, Yang Y, Hu Y, Zhao Z. Electrochemical quercetin sensor based on a nanocomposite consisting of magnetized reduced graphene oxide, silver nanoparticles and a molecularly imprinted polymer on a screen-printed electrode. Mikrochim Acta 2017; 185:70YaoZYangXLiuXYangYHuYZhaoZElectrochemical quercetin sensor based on a nanocomposite consisting of magnetized reduced graphene oxide, silver nanoparticles and a molecularly imprinted polymer on a screen-printed electrodeMikrochim Acta20171857010.1007/s00604-017-2613-529594565Search in Google Scholar

Hu M, Chen J, Li ZY, Au L, Hartland GV, Li X, Marquez M, Xia Y. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 2006; 35:1084-94HuMChenJLiZYAuLHartlandGVLiXMarquezMXiaYGold nanostructures: engineering their plasmonic properties for biomedical applicationsChem Soc Rev20063510849410.1039/b517615h17057837Search in Google Scholar

Romo-Herrera JM, Alvarez-Puebla RA, Liz-Marzan LM. Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 2011; 3:1304-15Romo-HerreraJMAlvarez-PueblaRALiz-MarzanLMControlled assembly of plasmonic colloidal nanoparticle clustersNanoscale2011313041510.1201/9780429295188-10Search in Google Scholar

Kumar KK, Devendiran M, Kalaivani RA, Narayanan SS. Enhanced electrochemical sensing of dopamine in the presence of AA and UA using a curcumin functionalized gold nanoparticle modified electrode. New Journal of Chemistry 2019; 43:19003-19013KumarKKDevendiranMKalaivaniRANarayananSSEnhanced electrochemical sensing of dopamine in the presence of AA and UA using a curcumin functionalized gold nanoparticle modified electrodeNew Journal of Chemistry201943190031901310.1039/C9NJ04398ESearch in Google Scholar

Shriver-Lake LC, Donner B, Edelstein R, Breslin K, Bhatia SK, Ligler FS. Antibody Immobilization using Heterobifunctional Crosslinkers. Biosens Bioelectron 1997; 12:1101-1106Shriver-LakeLCDonnerBEdelsteinRBreslinKBhatiaSKLiglerFSAntibody Immobilization using Heterobifunctional CrosslinkersBiosens Bioelectron1997121101110610.1016/S0956-5663(97)00070-5Search in Google Scholar

Ma LY, Miao SS, Lu FF, Wu MS, Lu YC, Yang H. Selective Electrochemical Determination of Salicylic Acid in Wheat Using Molecular Imprinted Polymers. Anal Lett 2017; 50:2369-2385MaLYMiaoSSLuFFWuMSLuYCYangHSelective Electrochemical Determination of Salicylic Acid in Wheat Using Molecular Imprinted PolymersAnal Lett2017502369238510.1080/00032719.2017.1291654Search in Google Scholar

Wang J, Li J, Zeng C, Qu Q, Wang M, Qi W, Su R, He Z. Sandwich-Like Sensor for the Highly Specific and Reproducible Detection of Rhodamine 6G on a Surface-Enhanced Raman Scattering Platform. ACS Appl Mater Interfaces 2020; 12:4699-4706WangJLiJZengCQuQWangMQiWSuRHeZSandwich-Like Sensor for the Highly Specific and Reproducible Detection of Rhodamine 6G on a Surface-Enhanced Raman Scattering PlatformACS Appl Mater Interfaces2020124699470610.1021/acsami.9b1677331903739Search in Google Scholar

Xing R, Wen Y, Dong Y, Wang Y, Zhang Q, Liu Z. Dual Molecularly Imprinted Polymer-Based Plasmonic Immunosandwich Assay for the Specific and Sensitive Detection of Protein Biomarkers. Anal Chem 2019; 91:9993-10000XingRWenYDongYWangYZhangQLiuZDual Molecularly Imprinted Polymer-Based Plasmonic Immunosandwich Assay for the Specific and Sensitive Detection of Protein BiomarkersAnal Chem20199199931000010.1021/acs.analchem.9b0182631347834Search in Google Scholar

Lv Y, Tan T, Svec F. Molecular imprinting of proteins in polymers attached to the surface of nanomaterials for selective recognition of biomacromolecules. Biotechnol Adv 2013; 31:1172-86LvYTanTSvecFMolecular imprinting of proteins in polymers attached to the surface of nanomaterials for selective recognition of biomacromoleculesBiotechnol Adv20133111728610.1016/j.biotechadv.2013.02.00523466364Search in Google Scholar

Maiti D, Tong X, Mou X, Yang K. Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study. Front Pharmacol 2018; 9:1401MaitiDTongXMouXYangKCarbon-Based Nanomaterials for Biomedical Applications: A Recent StudyFront Pharmacol20189140110.3389/fphar.2018.01401642139830914959Search in Google Scholar

Alwarappan S, Cissell K, Dixit S, Mohapatra S, Li CZ. Chitosan-Modified Graphene Electrodes for DNA Mutation Analysis. J Electroanal Chem (Lausanne) 2012; 686:69-72AlwarappanSCissellKDixitSMohapatraSLiCZChitosan-Modified Graphene Electrodes for DNA Mutation AnalysisJ Electroanal Chem (Lausanne)2012686697210.1016/j.jelechem.2012.09.026358705223472058Search in Google Scholar

Alwarappan S, Singh SR, Pillai S, Kumar A, Mohapatra S. Direct Electrochemistry of Glucose Oxidase at a Gold Electrode Modified with Graphene Nanosheets. Anal Lett 2012; 45:746-753AlwarappanSSinghSRPillaiSKumarAMohapatraSDirect Electrochemistry of Glucose Oxidase at a Gold Electrode Modified with Graphene NanosheetsAnal Lett20124574675310.1080/00032719.2011.653900Search in Google Scholar

Ertugrul Uygun HD, Uygun ZO, Canbay E, Gi Rgi NSF, Sezer E. Non-invasive cortisol detection in saliva by using molecularly cortisol imprinted fullerene-acrylamide modified screen printed electrodes. Talanta 2020; 206:120225Ertugrul UygunHDUygunZOCanbayEGi RgiNSFSezerENon-invasive cortisol detection in saliva by using molecularly cortisol imprinted fullerene-acrylamide modified screen printed electrodesTalanta202020612022510.1016/j.talanta.2019.12022531514839Search in Google Scholar

Han S, Su L, Zhai M, Ma L, Liu S, Teng Y. A molecularly imprinted composite based on graphene oxide for targeted drug delivery to tumor cells. Journal of Materials Science 2018; 54:3331-3341HanSSuLZhaiMMaLLiuSTengYA molecularly imprinted composite based on graphene oxide for targeted drug delivery to tumor cellsJournal of Materials Science2018543331334110.1007/s10853-018-3023-8Search in Google Scholar

Han S, Teng F, Wang Y, Su L, Leng Q, Jiang H. Drug-loaded dual targeting graphene oxide-based molecularly imprinted composite and recognition of carcino-embryonic antigen. RSC Advances 2020; 10:10980-10988HanSTengFWangYSuLLengQJiangHDrug-loaded dual targeting graphene oxide-based molecularly imprinted composite and recognition of carcino-embryonic antigenRSC Advances202010109801098810.1039/D0RA00574F905044535495356Search in Google Scholar

Prasad BB, Singh R, Kumar A. Synthesis of fullerene (C60-monoadduct)-based water-compatible imprinted micelles for electrochemical determination of chlorambucil. Biosens Bioelectron 2017; 94:115-123PrasadBBSinghRKumarASynthesis of fullerene (C60-monoadduct)-based water-compatible imprinted micelles for electrochemical determination of chlorambucilBiosens Bioelectron20179411512310.1016/j.bios.2017.02.04028262609Search in Google Scholar

Lu AH, Salabas EL, Schuth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 2007; 46:1222-44LuAHSalabasELSchuthFMagnetic nanoparticles: synthesis, protection, functionalization, and applicationAngew Chem Int Ed Engl20074612224410.1002/anie.20060286617278160Search in Google Scholar

Phan MH, Alonso J, Khurshid H, Lampen-Kelley P, Chandra S, Stojak Repa K, Nemati Z, Das R, Iglesias O, Srikanth H. Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems. Nanomaterials (Basel) 2016; 6:PhanMHAlonsoJKhurshidHLampen-KelleyPChandraSStojak RepaKNematiZDasRIglesiasOSrikanthHExchange Bias Effects in Iron Oxide-Based Nanoparticle SystemsNanomaterials (Basel)2016610.3390/nano6110221524574928335349Search in Google Scholar

Denmark DJ, Photopolymerization Synthesis of Magnetic Nanoparticle Embedded Nanogels for Targeted Biotherapeutic Delivery, in Department of Physics. 2017, University of South Florida: USF Scholar Commons. p. 214DenmarkDJPhotopolymerization Synthesis of Magnetic Nanoparticle Embedded Nanogels for Targeted Biotherapeutic Delivery, in Department of Physics2017University of South Florida: USF Scholar Commons214Search in Google Scholar

Alonso J, Barandiarán JM, Fernández Barquín L, García-Arribas A, in Magnetic Nanoparticles, Synthesis, Properties, and Applications, ed. By A.A. El-Gendy, J.M. Barandiarán, and R.L. Hadimani (Elsevier, 2018), 1-40.AlonsoJBarandiaránJMFernándezBarquín LGarcía-ArribasAin Magnetic Nanoparticles, Synthesis, Properties, and ApplicationsEl-GendyA.A.BarandiaránJ.M.HadimaniR.L.Elsevier201814010.1016/B978-0-12-813904-2.00001-2Search in Google Scholar

Wu K, Su D, Liu J, Saha R, Wang JP. Magnetic nanoparticles in nanomedicine: a review of recent advances. Nanotechnology 2019; 30:502003WuKSuDLiuJSahaRWangJPMagnetic nanoparticles in nanomedicine: a review of recent advancesNanotechnology20193050200310.1088/1361-6528/ab424131491782Search in Google Scholar

Denmark DJ, Mukherjee D, Bradley J, Witanachchi S, Mukherjee P. Systematic Study on the Remote Triggering of Thermo-Responsive Hydrogels Using RF Heating of Fe3O4 Nanoparticles. MRS Proceedings 2015; 1718:35-40DenmarkDJMukherjeeDBradleyJWitanachchiSMukherjeePSystematic Study on the Remote Triggering of Thermo-Responsive Hydrogels Using RF Heating of Fe3O4 NanoparticlesMRS Proceedings20151718354010.1557/opl.2015.436Search in Google Scholar

Smith JE, Sapsford KE, Tan W, Ligler FS. Optimization of antibody-conjugated magnetic nanoparticles for target preconcentration and immunoassays. Anal Biochem 2011; 410:124-32SmithJESapsfordKETanWLiglerFSOptimization of antibody-conjugated magnetic nanoparticles for target preconcentration and immunoassaysAnal Biochem20114101243210.1016/j.ab.2010.11.005367074721078282Search in Google Scholar

Chen YT, Kolhatkar AG, Zenasni O, Xu S, Lee TR. Biosensing Using Magnetic Particle Detection Techniques. Sensors (Basel) 2017; 17:ChenYTKolhatkarAGZenasniOXuSLeeTRBiosensing Using Magnetic Particle Detection TechniquesSensors (Basel)20171710.3390/s17102300567666028994727Search in Google Scholar

Lin G, Makarov D, Schmidt OG. Magnetic sensing platform technologies for biomedical applications. Lab Chip 2017; 17:1884-1912LinGMakarovDSchmidtOGMagnetic sensing platform technologies for biomedical applicationsLab Chip2017171884191210.1039/C7LC00026J28485417Search in Google Scholar

Llandro J, Palfreyman JJ, Ionescu A, Barnes CH. Magnetic biosensor technologies for medical applications: a review. Med Biol Eng Comput 2010; 48:977-98LlandroJPalfreymanJJIonescuABarnesCHMagnetic biosensor technologies for medical applications: a reviewMed Biol Eng Comput2010489779810.1007/s11517-010-0649-320574723Search in Google Scholar

Ludwig F, Heim E, Mauselein S, Eberbeck D, Schilling M. Magnetorelaxometry of magnetic nanoparticles with fluxgate magnetometers for the analysis of biological targets. J Magn Magn Mater 2005; 293:690-695LudwigFHeimEMauseleinSEberbeckDSchillingMMagnetorelaxometry of magnetic nanoparticles with fluxgate magnetometers for the analysis of biological targetsJ Magn Magn Mater200529369069510.1016/j.jmmm.2005.02.045Search in Google Scholar

Nabaei V, Chandrawati R, Heidari H. Magnetic biosensors: Modelling and simulation. Biosens Bioelectron 2018; 103:69-86NabaeiVChandrawatiRHeidariHMagnetic biosensors: Modelling and simulationBiosens Bioelectron2018103698610.1016/j.bios.2017.12.02329278815Search in Google Scholar

Phan MH and Peng HX. Giant magnetoimpedance materials: Fundamentals and applications. Prog Mater Sci 2008; 53:323-420PhanMHPengHXGiant magnetoimpedance materials: Fundamentals and applicationsProg Mater Sci20085332342010.1016/j.pmatsci.2007.05.003Search in Google Scholar

Rocha-Santos TAP. Sensors and biosensors based on magnetic nanoparticles. Trac-Trends in Analytical Chemistry 2014; 62:28-36Rocha-SantosTAP.Sensors and biosensors based on magnetic nanoparticlesTrac-Trends in Analytical Chemistry201462283610.1016/j.trac.2014.06.016Search in Google Scholar

Chen Y, Xie Z, Zhang L, Hu X. Effective preparation of magnetic molecularly imprinted polymer nanoparticle for the rapid and selective extraction of cyfluthrin from honeysuckle. J Biomater Sci Polym Ed 2020.1-15ChenYXieZZhangLHuXEffective preparation of magnetic molecularly imprinted polymer nanoparticle for the rapid and selective extraction of cyfluthrin from honeysuckleJ Biomater Sci Polym Ed202011510.1080/09205063.2020.173178832069426Search in Google Scholar

Lan T, Zhang J, Lu Y. Transforming the blood glucose meter into a general healthcare meter for in vitro diagnostics in mobile health. Biotechnol Adv 2016; 34:331-41LanTZhangJLuYTransforming the blood glucose meter into a general healthcare meter for in vitro diagnostics in mobile healthBiotechnol Adv2016343314110.1016/j.biotechadv.2016.03.002483367126946282Search in Google Scholar

Devkota J, Howell M, Mukherjee P, Srikanth H, Mohapatra S, Phan MH. Magneto-reactance based detection of MnO nanoparticle-embedded Lewis lung carcinoma cells. J Appl Phys 2015; 117:17D123DevkotaJHowellMMukherjeePSrikanthHMohapatraSPhanMHMagneto-reactance based detection of MnO nanoparticle-embedded Lewis lung carcinoma cellsJ Appl Phys201511717D12310.1063/1.4914950Search in Google Scholar

Pankhurst Q, Connolly J, Jones S, Dobson J. Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics 2003; 36:R167-R181PankhurstQConnollyJJonesSDobsonJApplications of magnetic nanoparticles in biomedicineJournal of Physics D: Applied Physics200336R167R18110.1088/0022-3727/36/13/201Search in Google Scholar

Clarke J, Lee YH, Schneiderman J. Focus on SQUIDs in Biomagnetism. Supercond Sci Technol 2018; 31:080201ClarkeJLeeYHSchneidermanJFocus on SQUIDs in BiomagnetismSupercond Sci Technol20183108020110.1088/1361-6668/aacb14Search in Google Scholar

Enpuku K, Tsujita Y, Nakamura K, Sasayama T, Yoshida T. Biosensing utilizing magnetic markers and superconducting quantum interference devices. Supercond Sci Tech 2017; 30:053002EnpukuKTsujitaYNakamuraKSasayamaTYoshidaTBiosensing utilizing magnetic markers and superconducting quantum interference devicesSupercond Sci Tech20173005300210.1088/1361-6668/aa5fceSearch in Google Scholar

Guo L, Yang Z, Zhi S, Feng Z, Lei C, Zhou Y. A sensitive and innovative detection method for rapid C-reactive proteins analysis based on a micro-fluxgate sensor system. PLoS One 2018; 13:e0194631GuoLYangZZhiSFengZLeiCZhouYA sensitive and innovative detection method for rapid C-reactive proteins analysis based on a micro-fluxgate sensor systemPLoS One201813e019463110.1371/journal.pone.0194631587783629601593Search in Google Scholar

Heim E, Ludwig F, Schilling M. Binding assays with streptavidin-functionalized superparamagnetic nanoparticles and biotinylated analytes using fluxgate magnetorelaxometry. Journal of Magnetism and Magnetic Materials 2009; 321:1628-1631HeimELudwigFSchillingMBinding assays with streptavidin-functionalized superparamagnetic nanoparticles and biotinylated analytes using fluxgate magnetorelaxometryJournal of Magnetism and Magnetic Materials20093211628163110.1016/j.jmmm.2009.02.101Search in Google Scholar

Krishna VD, Wu K, Perez AM, Wang JP. Giant Magneto-resistance-based Biosensor for Detection of Influenza A Virus. Front Microbiol 2016; 7:400KrishnaVDWuKPerezAMWangJPGiant Magneto-resistance-based Biosensor for Detection of Influenza A VirusFront Microbiol2016740010.3389/fmicb.2016.00400480987227065967Search in Google Scholar

Ng E, Nadeau KC, Wang SX. Giant magnetoresistive sensor array for sensitive and specific multiplexed food allergen detection. Biosens Bioelectron 2016; 80:359-365NgENadeauKCWangSXGiant magnetoresistive sensor array for sensitive and specific multiplexed food allergen detectionBiosens Bioelectron20168035936510.1016/j.bios.2016.02.00226859787Search in Google Scholar

Wang Z, Hu T, Liang R, Wei M. Application of Zero-Dimensional Nanomaterials in Biosensing. Front Chem 2020; 8:320WangZHuTLiangRWeiMApplication of Zero-Dimensional Nanomaterials in BiosensingFront Chem2020832010.3389/fchem.2020.00320718265632373593Search in Google Scholar

Wang Y, Zhu Y, Huang J, Cai J, Zhu J, Yang X, Shen J, Li C. Perovskite quantum dots encapsulated in electrospun fiber membranes as multifunctional supersensitive sensors for biomolecules, metal ions and pH. Nanoscale Horiz 2017; 2:225-232WangYZhuYHuangJCaiJZhuJYangXShenJLiCPerovskite quantum dots encapsulated in electrospun fiber membranes as multifunctional supersensitive sensors for biomolecules, metal ions and pHNanoscale Horiz2017222523210.1039/C7NH00057JSearch in Google Scholar

Mo G, Qin D, Jiang X, Zheng X, Mo W, Deng B. A sensitive electrochemiluminescence biosensor based on metal-organic framework and imprinted polymer for squamous cell carcinoma antigen detection. Sensors Actuators B: Chem 2020; 310:127852MoGQinDJiangXZhengXMoWDengBA sensitive electrochemiluminescence biosensor based on metal-organic framework and imprinted polymer for squamous cell carcinoma antigen detectionSensors Actuators B: Chem202031012785210.1016/j.snb.2020.127852Search in Google Scholar

Mandani S, Rezaei B, Ensafi AA. Sensitive imprinted optical sensor based on mesoporous structure and green nanoparticles for the detection of methamphetamine in plasma and urine. Spectrochim Acta A Mol Biomol Spectrosc 2020; 231:118077MandaniSRezaeiBEnsafiAASensitive imprinted optical sensor based on mesoporous structure and green nanoparticles for the detection of methamphetamine in plasma and urineSpectrochim Acta A Mol Biomol Spectrosc202023111807710.1016/j.saa.2020.11807732007904Search in Google Scholar

Lofgreen JE and Ozin GA. Controlling morphology and porosity to improve performance of molecularly imprinted sol-gel silica. Chem Soc Rev 2014; 43:911-33LofgreenJEOzinGAControlling morphology and porosity to improve performance of molecularly imprinted sol-gel silicaChem Soc Rev2014439113310.1039/C3CS60276ASearch in Google Scholar

Gui R, Guo H, Jin H. Preparation and applications of electrochemical chemosensors based on carbon-nanomaterial-modified molecularly imprinted polymers. Nanoscale Advances 2019; 1:3325-3363GuiRGuoHJinHPreparation and applications of electrochemical chemosensors based on carbon-nanomaterial-modified molecularly imprinted polymersNanoscale Advances201913325336310.1039/C9NA00455FSearch in Google Scholar

Lai CY, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Lin VS. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 2003; 125:4451-9LaiCYTrewynBGJeftinijaDMJeftinijaKXuSJeftinijaSLinVSA mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug moleculesJ Am Chem Soc20031254451910.1021/ja028650l12683815Search in Google Scholar

Trewyn BG, Slowing II, Giri S, Chen H-T, Lin VS. Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol-Gel Process and Applications in Controlled Release. Acc Chem Res 2007; 40:846-853TrewynBGSlowingIIGiriSChenH-TLinVSSynthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol-Gel Process and Applications in Controlled ReleaseAcc Chem Res20074084685310.1021/ar600032u17645305Search in Google Scholar

Vazquez NI, Gonzalez Z, Ferrari B, Castro Y. Synthesis of mesoporous silica nanoparticles by sol–gel as nanocontainer for future drug delivery applications. Boletín de la Sociedad Española de Cerámica y Vidrio 2017; 56:139-145VazquezNIGonzalezZFerrariBCastroYSynthesis of mesoporous silica nanoparticles by sol–gel as nanocontainer for future drug delivery applicationsBoletín de la Sociedad Española de Cerámica y Vidrio20175613914510.1016/j.bsecv.2017.03.002Search in Google Scholar

Amatatongchai M, Sitanurak J, Sroysee W, Sodanat S, Chairam S, Jarujamrus P, Nacapricha D, Lieberzeit PA. Highly sensitive and selective electrochemical paper-based device using a graphite screen-printed electrode modified with molecularly imprinted polymers coated Fe3O4@Au@ SiO2 for serotonin determination. Anal Chim Acta 2019; 1077:255-265AmatatongchaiMSitanurakJSroyseeWSodanatSChairamSJarujamrusPNacaprichaDLieberzeitPAHighly sensitive and selective electrochemical paper-based device using a graphite screen-printed electrode modified with molecularly imprinted polymers coated Fe3O4@Au@ SiO2 for serotonin determinationAnal Chim Acta2019107725526510.1016/j.aca.2019.05.04731307717Search in Google Scholar

Saeedzadeh Amiri N and Milani Hosseini M-R. Application of ratiometric fluorescence sensor-based microwave-assisted synthesized CdTe quantum dots and mesoporous structured epitope-imprinted polymers for highly efficient determination of tyrosine phosphopeptide. Analytical Methods 2020; 12:63-72SaeedzadehAmiri NMilani HosseiniM-RApplication of ratiometric fluorescence sensor-based microwave-assisted synthesized CdTe quantum dots and mesoporous structured epitope-imprinted polymers for highly efficient determination of tyrosine phosphopeptideAnalytical Methods202012637210.1039/C9AY00276FSearch in Google Scholar

Geng Y, Guo M, Tan J, Huang S, Tang Y, Tan L, Liang Y. The fabrication of highly ordered fluorescent molecularly imprinted mesoporous microspheres for the selective sensing of sparfloxacin in biological samples. Sensors Actuators B: Chem 2019; 281:821-829GengYGuoMTanJHuangSTangYTanLLiangYThe fabrication of highly ordered fluorescent molecularly imprinted mesoporous microspheres for the selective sensing of sparfloxacin in biological samplesSensors Actuators B: Chem201928182182910.1016/j.snb.2018.10.098Search in Google Scholar

Kumar N, Chauhan NS, Mittal A, Sharma S. TiO2 and its composites as promising biomaterials: a review. Biometals 2018; 31:147-159KumarNChauhanNSMittalASharmaSTiO2 and its composites as promising biomaterials: a reviewBiometals20183114715910.1007/s10534-018-0078-629392447Search in Google Scholar

Sajini T, Gigimol MG, Mathew B. A brief overview of molecularly imprinted polymers supported on titanium dioxide matrices. Materials Today Chemistry 2019; 11:283-295SajiniTGigimolMGMathewBA brief overview of molecularly imprinted polymers supported on titanium dioxide matricesMaterials Today Chemistry20191128329510.1016/j.mtchem.2018.11.010Search in Google Scholar

Zhao Z, Zhu C, Guo Q, Cai Y, Zhu X, Li B. Preparation of lysozyme-imprinted nanoparticles on polydopamine-modified titanium dioxide using ionic liquid as a stabilizer. RSC Advances 2019; 9:14974-14981ZhaoZZhuCGuoQCaiYZhuXLiBPreparation of lysozyme-imprinted nanoparticles on polydopamine-modified titanium dioxide using ionic liquid as a stabilizerRSC Advances20199149741498110.1039/C9RA00941H906423935516334Search in Google Scholar

Huang X, Wei S, Yao S, Zhang H, He C, Cao J. Development of molecularly imprinted electrochemical sensor with reduced graphene oxide and titanium dioxide enhanced performance for the detection of toltrazuril in chicken muscle and egg. J Pharm Biomed Anal 2019; 164:607-614HuangXWeiSYaoSZhangHHeCCaoJDevelopment of molecularly imprinted electrochemical sensor with reduced graphene oxide and titanium dioxide enhanced performance for the detection of toltrazuril in chicken muscle and eggJ Pharm Biomed Anal201916460761410.1016/j.jpba.2018.11.02030469110Search in Google Scholar

Yu M, Wu L, Miao J, Wei W, Liu A, Liu S. Titanium dioxide and polypyrrole molecularly imprinted polymer nanocomposites based electrochemical sensor for highly selective detection of p-nonylphenol. Anal Chim Acta 2019; 1080:84-94YuMWuLMiaoJWeiWLiuALiuSTitanium dioxide and polypyrrole molecularly imprinted polymer nanocomposites based electrochemical sensor for highly selective detection of p-nonylphenolAnal Chim Acta20191080849410.1016/j.aca.2019.06.05331409478Search in Google Scholar

Zhang C, Bai W, Qin T, Yang Z. Fabrication of Red Mud/ Molecularly Imprinted Polypyrrole-Modified Electrode for the Piezoelectric Sensing of Bilirubin. IEEE Sensors Journal 2019; 19:1280-1284ZhangCBaiWQinTYangZFabrication of Red Mud/ Molecularly Imprinted Polypyrrole-Modified Electrode for the Piezoelectric Sensing of BilirubinIEEE Sensors Journal2019191280128410.1109/JSEN.2018.2883602Search in Google Scholar

Erickson D, Mandal S, Yang AH, Cordovez B. Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale. Microfluid Nanofluidics 2008; 4:33-52EricksonDMandalSYangAHCordovezBNanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscaleMicrofluid Nanofluidics20084335210.1007/s10404-007-0198-8254461118806888Search in Google Scholar

Xianyu YL, Wang QL, Chen YP. Magnetic particles-enabled biosensors for point-of-care testing. Trac-Trend Anal Chem 2018; 106:213-224XianyuYLWangQLChenYPMagnetic particles-enabled biosensors for point-of-care testingTrac-Trend Anal Chem201810621322410.1016/j.trac.2018.07.010Search in Google Scholar

Wang SX and Li G. Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: Review and outlook. Ieee Transactions on Magnetics 2008; 44:1687-1702WangSXLiGAdvances in giant magnetoresistance biosensors with magnetic nanoparticle tags: Review and outlookIeee Transactions on Magnetics2008441687170210.1109/TMAG.2008.920962Search in Google Scholar

Dey D and Goswami T. Optical biosensors: a revolution towards quantum nanoscale electronics device fabrication. J Biomed Biotechnol 2011; 2011:348218DeyDGoswamiTOptical biosensors: a revolution towards quantum nanoscale electronics device fabricationJ Biomed Biotechnol2011201134821810.1155/2011/348218320592422131802Search in Google Scholar

Kausar AS, Reza AW, Latef TA, Ullah MH, Karim ME. Optical nano antennas: state of the art, scope and challenges as a biosensor along with human exposure to nano-toxicology. Sensors (Basel) 2015; 15:8787-831KausarASRezaAWLatefTAUllahMHKarimMEOptical nano antennas: state of the art, scope and challenges as a biosensor along with human exposure to nano-toxicologySensors (Basel)201515878783110.3390/s150408787443128625884787Search in Google Scholar

Kidane S, Ishida H, Sawada K, Takahashi K. A suspended graphene-based optical interferometric surface stress sensor for selective biomolecular detection. Nanoscale Advances 2020; 2:1431-1436KidaneSIshidaHSawadaKTakahashiKA suspended graphene-based optical interferometric surface stress sensor for selective biomolecular detectionNanoscale Advances202021431143610.1039/C9NA00788ASearch in Google Scholar

Schrittwieser S, Pelaz B, Parak WJ, Lentijo-Mozo S, Soulantica K, Dieckhoff J, Ludwig F, Guenther A, Tschope A, Schotter J. Homogeneous Biosensing Based on Magnetic Particle Labels. Sensors (Basel) 2016; 16:SchrittwieserSPelazBParakWJLentijo-MozoSSoulanticaKDieckhoffJLudwigFGuentherATschopeASchotterJHomogeneous Biosensing Based on Magnetic Particle LabelsSensors (Basel)20161610.3390/s16060828493425427275824Search in Google Scholar

Lai M and Slaughter G. Label-Free MicroRNA Optical Biosensors. Nanomaterials (Basel) 2019; 9:LaiMSlaughterGLabel-Free MicroRNA Optical BiosensorsNanomaterials (Basel)2019910.3390/nano9111573691549831698769Search in Google Scholar

Sun Y and Zhong S. Molecularly imprinted polymers fabricated via Pickering emulsions stabilized solely by food-grade casein colloidal nanoparticles for selective protein recognition. Anal Bioanal Chem 2018; 410:3133-3143SunYZhongSMolecularly imprinted polymers fabricated via Pickering emulsions stabilized solely by food-grade casein colloidal nanoparticles for selective protein recognitionAnal Bioanal Chem20184103133314310.1007/s00216-018-1006-x29582119Search in Google Scholar

Yousefzadeh A, Hassanzadeh J, Mousavi SMJ, Yousefzadeh M. Surface molecular imprinting and powerfully enhanced chemiluminescence emission by Cu nanoclusters/MOF composite for detection of tramadol. Sensors Actuators B: Chem 2019; 286:154-162YousefzadehAHassanzadehJMousaviSMJYousefzadehMSurface molecular imprinting and powerfully enhanced chemiluminescence emission by Cu nanoclusters/MOF composite for detection of tramadolSensors Actuators B: Chem201928615416210.1016/j.snb.2019.01.155Search in Google Scholar

Zhao LF, Wei Q, Wu H, Li H, Li D, Mohapatra SS. Portable and quantitative evaluation of stem cell therapy towards damaged hepatocytes. Rsc Advances 2015; 5:19439-19444ZhaoLFWeiQWuHLiHLiDMohapatraSSPortable and quantitative evaluation of stem cell therapy towards damaged hepatocytesRsc Advances20155194391944410.1039/C5RA00191ASearch in Google Scholar

Das A, Cui X, Chivukula V, Iyer SS. Detection of Enzymes, Viruses, and Bacteria Using Glucose Meters. Anal Chem 2018; 90:11589-11598DasACuiXChivukulaVIyerSSDetection of Enzymes, Viruses, and Bacteria Using Glucose MetersAnal Chem201890115891159810.1021/acs.analchem.8b0296030191710Search in Google Scholar

Wu T, Cao Y, Yang Y, Zhang X, Wang S, Xu LP, Zhang X. A three-dimensional DNA walking machine for the ultrasensitive dual-modal detection of miRNA using a fluorometer and personal glucose meter. Nanoscale 2019; 11:11279-11284WuTCaoYYangYZhangXWangSXuLPZhangXA three-dimensional DNA walking machine for the ultrasensitive dual-modal detection of miRNA using a fluorometer and personal glucose meterNanoscale201911112791128410.1039/C9NR03588ESearch in Google Scholar

Jia X, Dong S, Wang E. Engineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensors. Biosens Bioelectron 2016; 76:80-90JiaXDongSWangEEngineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensorsBiosens Bioelectron201676809010.1016/j.bios.2015.05.03726001888Search in Google Scholar

Yuan L, Zhang J, Zhou P, Chen J, Wang R, Wen T, Li Y, Zhou X, Jiang H. Electrochemical sensor based on molecularly imprinted membranes at platinum nanoparticles-modified electrode for determination of 17beta-estradiol. Biosens Bioelectron 2011; 29:29-33YuanLZhangJZhouPChenJWangRWenTLiYZhouXJiangHElectrochemical sensor based on molecularly imprinted membranes at platinum nanoparticles-modified electrode for determination of 17beta-estradiolBiosens Bioelectron201129293310.1016/j.bios.2011.07.05821875784Search in Google Scholar

Amatatongchai M, Sroysee W, Jarujamrus P, Nacapricha D, Lieberzeit PA. Selective amperometric flow-injection analysis of carbofuran using a molecularly-imprinted polymer and gold-coated-magnetite modified carbon nanotube-paste electrode. Talanta 2018; 179:700-709AmatatongchaiMSroyseeWJarujamrusPNacaprichaDLieberzeitPASelective amperometric flow-injection analysis of carbofuran using a molecularly-imprinted polymer and gold-coated-magnetite modified carbon nanotube-paste electrodeTalanta201817970070910.1016/j.talanta.2017.11.06429310297Search in Google Scholar

Yola ML and Atar N. Development of cardiac troponin-I biosensor based on boron nitride quantum dots including molecularly imprinted polymer. Biosens Bioelectron 2019; 126:418-424YolaMLAtarNDevelopment of cardiac troponin-I biosensor based on boron nitride quantum dots including molecularly imprinted polymerBiosens Bioelectron201912641842410.1016/j.bios.2018.11.01630471567Search in Google Scholar

Chen MM, Cheng SB, Ji K, Gao J, Liu YL, Wen W, Zhang X, Wang S, Huang WH. Construction of a flexible electro-chemiluminescence platform for sweat detection. Chem Sci 2019; 10:6295-6303ChenMMChengSBJiKGaoJLiuYLWenWZhangXWangSHuangWHConstruction of a flexible electro-chemiluminescence platform for sweat detectionChem Sci2019106295630310.1039/C9SC01937ESearch in Google Scholar

Gu Y, Wang J, Shi H, Pan M, Liu B, Fang G, Wang S. Electrochemiluminescence sensor based on upconversion nanoparticles and oligoaniline-crosslinked gold nanoparticles imprinting recognition sites for the determination of dopamine. Biosens Bioelectron 2019; 128:129-136GuYWangJShiHPanMLiuBFangGWangSElectrochemiluminescence sensor based on upconversion nanoparticles and oligoaniline-crosslinked gold nanoparticles imprinting recognition sites for the determination of dopamineBiosens Bioelectron201912812913610.1016/j.bios.2018.12.04330658229Search in Google Scholar

Holzinger M, Le Goff A, Cosnier S. Synergetic Effects of Combined Nanomaterials for Biosensing Applications. Sensors (Basel) 2017; 17:HolzingerMLe GoffACosnierSSynergetic Effects of Combined Nanomaterials for Biosensing ApplicationsSensors (Basel)20171710.3390/s17051010546953328467365Search in Google Scholar

Chen GY, Thundat T, Wachter EA, Warmack RJ. Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers. Journal of Applied Physics 1995; 77:3618-3622ChenGYThundatTWachterEAWarmackRJAdsorption-induced surface stress and its effects on resonance frequency of microcantileversJournal of Applied Physics1995773618362210.1063/1.359562Search in Google Scholar

Wang T, Green R, Nair RR, Howell M, Mohapatra S, Guldiken R, Mohapatra SS. Surface Acoustic Waves (SAW)-Based Biosensing for Quantification of Cell Growth in 2D and 3D Cultures. Sensors (Basel) 2015; 15:32045-55WangTGreenRNairRRHowellMMohapatraSGuldikenRMohapatraSSSurface Acoustic Waves (SAW)-Based Biosensing for Quantification of Cell Growth in 2D and 3D CulturesSensors (Basel)201515320455510.3390/s151229909472182626703604Search in Google Scholar

Yu H, Chen Y, Xu P, Xu T, Bao Y, Li X. mu-’Diving suit’ for liquid-phase high-Q resonant detection. Lab Chip 2016; 16:902-10YuHChenYXuPXuTBaoYLiXmu-’Diving suit’ for liquid-phase high-Q resonant detectionLab Chip2016169021010.1039/C5LC01187FSearch in Google Scholar

Mazouz Z, Rahali S, Fourati N, Zerrouki C, Aloui N, Seydou M, Yaakoubi N, Chehimi MM, Othmane A, Kalfat R. Highly Selective Polypyrrole MIP-Based Gravimetric and Electrochemical Sensors for Picomolar Detection of Glyphosate. Sensors (Basel) 2017; 17:MazouzZRahaliSFouratiNZerroukiCAlouiNSeydouMYaakoubiNChehimiMMOthmaneAKalfatRHighly Selective Polypyrrole MIP-Based Gravimetric and Electrochemical Sensors for Picomolar Detection of GlyphosateSensors (Basel)20171710.3390/s17112586571299129120397Search in Google Scholar

Okan M, Sari E, Duman M. Molecularly imprinted polymer based micromechanical cantilever sensor system for the selective determination of ciprofloxacin. Biosens Bioelectron 2017; 88:258-264OkanMSariEDumanMMolecularly imprinted polymer based micromechanical cantilever sensor system for the selective determination of ciprofloxacinBiosens Bioelectron20178825826410.1016/j.bios.2016.08.04727595169Search in Google Scholar

Dayal H, Ng WY, Lin XH, Li SFY. Development of a hydrophilic molecularly imprinted polymer for the detection of hydrophilic targets using quartz crystal microbalance. Sensors Actuators B: Chem 2019; 300:127044DayalHNgWYLinXHLiSFYDevelopment of a hydrophilic molecularly imprinted polymer for the detection of hydrophilic targets using quartz crystal microbalanceSensors Actuators B: Chem201930012704410.1016/j.snb.2019.127044Search in Google Scholar

Tang P, Wang Y, Huo J, Lin X. Love Wave Sensor for Prostate-Specific Membrane Antigen Detection Based on Hydrophilic Molecularly-Imprinted Polymer. Polymers (Basel) 2018; 10:TangPWangYHuoJLinXLove Wave Sensor for Prostate-Specific Membrane Antigen Detection Based on Hydrophilic Molecularly-Imprinted PolymerPolymers (Basel)20181010.3390/polym10050563641538430966597Search in Google Scholar

Dezest D, Leïchlé T, Teerapanich P, Mathieu F, Bui BTS, Haupt K, Nicu L. Multiplexed functionalization of nano-electromechanical systems with photopatterned molecularly imprinted polymers. Journal of Micromechanics and Microengineering 2019; 29:025013DezestDLeïchléTTeerapanichPMathieuFBuiBTSHauptKNicuLMultiplexed functionalization of nano-electromechanical systems with photopatterned molecularly imprinted polymersJournal of Micromechanics and Microengineering20192902501310.1088/1361-6439/aaf84eSearch in Google Scholar

eISSN:
2564-615X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Genetics, Biotechnology, Bioinformatics, other