Open Access

Biosynthesis of silver nanoparticles mediated by culture filtrate of lactic acid bacteria, characterization and antifungal activity


Cite

Zhang X. Gold Nanoparticles: Recent Advances in the Biomedical Applications. Cell Biochem Biophys 2015; 72: 771-775. https://doi.org/10.1007/s12013-015-0529-4ZhangXGold Nanoparticles: Recent Advances in the Biomedical ApplicationsCell Biochem Biophys201572771775https://doi.org/10.1007/s12013-015-0529-410.1007/s12013-015-0529-425663504Search in Google Scholar

El-Sheekh M, El-Kassas H. Algal production of nano-silver and gold: their antimicrobial and cytotoxic activities: A review. J Gen Eng Biotechnol 2016; 14(2): 299-310; available online at: https://doi.org/10.1016/j.jgeb.2016.09.008El-SheekhMEl-KassasHAlgal production of nano-silver and gold: their antimicrobial and cytotoxic activities: A reviewJ Gen Eng Biotechnol2016142299310available online athttps://doi.org/10.1016/j.jgeb.2016.09.00810.1016/j.jgeb.2016.09.008629986930647628Search in Google Scholar

Rai M, Ingle AP, Birla S, Yadav A, Santos CAD. Strategic Role of Selected Noble Metal Nanoparticles in Medicine. Crit Rev Microbiol 2016; 42: 696-719.RaiMIngleAPBirlaSYadavASantosCADStrategic Role of Selected Noble Metal Nanoparticles in MedicineCrit Rev Microbiol20164269671910.3109/1040841X.2015.101813126089024Search in Google Scholar

Balashanmugam P, Balakumaran MD, Murugan R, Dhanapal K, Kalaichelvan PT. Phytogenic Synthesis of Silver Nanoparticles, Optimization and Evaluation of in Vitro Antifungal Activity against Human and Plant Pathogens. Microbiol Res 2016; 192: 52-64. https://doi.org/10.1016/j.micres.2016.06.004BalashanmugamPBalakumaranMDMuruganRDhanapalKKalaichelvanPTPhytogenic Synthesis of Silver Nanoparticles, Optimization and Evaluation of in Vitro Antifungal Activity against Human and Plant PathogensMicrobiol Res20161925264https://doi.org/10.1016/j.micres.2016.06.00410.1016/j.micres.2016.06.00427664723Search in Google Scholar

Prasad R, Bhattacharyya A, Nguyen QD. Nanotechnology in sustainable agriculture: recent developments, challenges and perspectives. Front Microbiol 2017; 8: 316-330. available online at: https://doi.org/10.3389/fmicb.2017.01014PrasadRBhattacharyyaANguyenQDNanotechnology in sustainable agriculture: recent developments, challenges and perspectivesFront Microbiol20178316330available online athttps://doi.org/10.3389/fmicb.2017.0101410.3389/fmicb.2017.01014547668728676790Search in Google Scholar

Awah JI, Ukwuru MU, Alum EA, Kingsley TL. Bio-preservative potential of lactic acid bacteria metabolites against fungal pathogens. Afr J Microbiol Res 2018; 12 (39): 913-922. on- line, DOI: 10.5897/AJMR2018.895AwahJIUkwuruMUAlumEAKingsleyTLBio-preservative potential of lactic acid bacteria metabolites against fungal pathogensAfr J Microbiol Res20181239913922on- line10.5897/AJMR2018.895Open DOISearch in Google Scholar

Prasad R, Kumar V, Kumar M, Shanquan W. Fungal nanobionics: principles and applications. Springer, Singapore 2018; https://www.springer.com/gb/book/9789811086656PrasadRKumarVKumarMShanquanWFungal nanobionics: principles and applicationsSpringerSingapore2018https://www.springer.com/gb/book/978981108665610.1007/978-981-10-8666-3Search in Google Scholar

Jalal M, Ansari MA, Alzohairy MA, Ali SG, Khan HM, Almatroudi A, Siddiqui MI. Anticandidal activity of biosynthesized silver nanoparticles: effect on growth, cell morphology, and key virulence attributes of Candida species. Int J Nanomedicine 2019; 14: 4667-4679.JalalMAnsariMAAlzohairyMAAliSGKhanHMAlmatroudiASiddiquiMIAnticandidal activity of biosynthesized silver nanoparticles: effect on growth, cell morphology, and key virulence attributes of Candida speciesInt J Nanomedicine2019144667467910.2147/IJN.S210449661283031308652Search in Google Scholar

Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N, 2010. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Coll Surf B Biointerfaces 2010; 76: 50-56.KrishnarajCJaganEGRajasekarSSelvakumarPKalaichelvanPTMohanN2010Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogensColl Surf B Biointerfaces 201076505610.1016/j.colsurfb.2009.10.00819896347Search in Google Scholar

Ahmed S, Ahmad M, Swami BL, Ikram S. A Review on Plants Extract Mediated Synthesis of Silver Nanoparticles for Antimicrobial Applications: A Green Expertise. J Adv Res 2016; 7: 17-28. https://doi.org/10.1016/j.jare.2015.02.007AhmedSAhmadMSwamiBLIkramSA Review on Plants Extract Mediated Synthesis of Silver Nanoparticles for Antimicrobial Applications: A Green ExpertiseJ Adv Res201671728https://doi.org/10.1016/j.jare.2015.02.00710.1016/j.jare.2015.02.007470347926843966Search in Google Scholar

Ojha S, Sett A, Bora U. Green Synthesis of Silver Nanoparticles by Ricinus communis var. carmencita Leaf Extract and Its Antibacterial Study. Adv Nat Sci : Nanosci Nanotechnol 2017; 8:Article ID: 035009. https://doi.org/10.1088/2043-6254/aa724bOjhaSSettABoraUGreen Synthesis of Silver Nanoparticles by Ricinus communis var. carmencita Leaf Extract and Its Antibacterial StudyAdv Nat Sci : Nanosci Nanotechnol20178:Article ID: 035009https://doi.org/10.1088/2043-6254/aa724b10.1088/2043-6254/aa724bSearch in Google Scholar

Patel V, Berthold D, Puranik P, Gantar M. Screening of cyanobacteria and microalgae for their ability to synthetize silver nanoparticles with antibacterial activity. Biotechnol Rep 2015; 5:112-119; available online at: https://doi.org/10.1016/j.btre.2014.12.001PatelVBertholdDPuranikPGantarMScreening of cyanobacteria and microalgae for their ability to synthetize silver nanoparticles with antibacterial activityBiotechnol Rep20155112119available online athttps://doi.org/10.1016/j.btre.2014.12.00110.1016/j.btre.2014.12.001546619528626689Search in Google Scholar

Salari Z, Danafar F, Dabaghi S, Ataei SA. Sustainable synthesis of silver nanoparticles using macroalgae Spirogyra varians and analysis of their antibacterial activity. J Saudi Chem Soc 2016; 20(4): 459-464; available online at: https://doi.org/10.1016/j.jscs.2014.10.004SalariZDanafarFDabaghiSAtaeiSASustainable synthesis of silver nanoparticles using macroalgae Spirogyra varians and analysis of their antibacterial activityJ Saudi Chem Soc2016204459464available online athttps://doi.org/10.1016/j.jscs.2014.10.00410.1016/j.jscs.2014.10.004Search in Google Scholar

Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol 2015; 99: 4579-4931. Doi: 10.1007/ s00253-015-6622-1SinghRShedbalkarUUWadhwaniSAChopadeBABacteriagenic silver nanoparticles: synthesis, mechanism, and applicationsAppl Microbiol Biotechnol2015994579493110.1007/s00253-015-6622-125952110Open DOISearch in Google Scholar

Matei A, Cornea CP, Matei S, Matei GM, Cogălniceanu G, Rodino S. Biosynthesis of silver nanoparticles using culture filtrates of lactic acid bacteria and analysis of antifungal activity. Dig J Nanomat Biostruct 2015; 10(4): 1201-1207, http://www.chalcogen.ro/1201_Matei.pdfMateiACorneaCPMateiSMateiGMCogălniceanuGRodinoSBiosynthesis of silver nanoparticles using culture filtrates of lactic acid bacteria and analysis of antifungal activityDig J Nanomat Biostruct201510412011207http://www.chalcogen.ro/1201_Matei.pdfSearch in Google Scholar

Khalil N. Biogenic silver nanoparticles by Aspergillus terreus as a powerful nanoweapon against Aspergillus fumigatus Afr J Microbiol Res 2013; 7(50): 5645-5651.KhalilNBiogenic silver nanoparticles by Aspergillus terreus as a powerful nanoweapon against Aspergillus fumigatusAfr J Microbiol Res20137505645565110.5897/AJMR2013.6429Search in Google Scholar

Ishida K, Cipriano T, Rocha GM, Weissmüler G, Gomez F, Miranda K, Rozental S. Silver nanoparticle production by the fungus Fusarium oxysporum nanoparticle characterization and analysis of antifungal activity against pathogenic yeasts. Mem Inst Oswaldo Cruz 2014;109(2): 220-228.IshidaKCiprianoTRochaGMWeissmülerGGomezFMirandaKRozentalSSilver nanoparticle production by the fungus Fusarium oxysporum nanoparticle characterization and analysis of antifungal activity against pathogenic yeastsMem Inst Oswaldo Cruz2014109222022810.1590/0074-0276130269401525924714966Search in Google Scholar

Ingale AG, Chaudhari AN. Biogenic synthesis of nanoparticles and potential applications: An eco-friendly approach. J Nanomed Nanotechnol 2013; available online at: http://www.omicsonline.org/2157-7439/2157-7439-4-165.digital/2157-7439-4-165.htmlIngaleAGChaudhariANBiogenic synthesis of nanoparticles and potential applications: An eco-friendly approachJ Nanomed Nanotechnol2013available online athttp://www.omicsonline.org/2157-7439/2157-7439-4-165.digital/2157-7439-4-165.html10.4172/2157-7439.1000165Search in Google Scholar

Raileanu-Plugaru V, Pomastowski P, Meller K, Zloch M, Rafinska K, Buszewski B. Lactococcus lactis as a safe and inexpensive source of bioactive silver composites. Appl Microbiol Biotechnol 2017; 101(19): 7141-7153. Doi:10.1007/s00253-017-8443-xRaileanu-PlugaruVPomastowskiPMellerKZlochMRafinskaKBuszewskiBLactococcus lactis as a safe and inexpensive source of bioactive silver compositesAppl Microbiol Biotechnol2017101197141715310.1007/s00253-017-8443-x559405528842740Open DOISearch in Google Scholar

Cueva M, Horsfall L. The contribution of microbially produced nanoparticles to sustainable development goals. Microb Biotechnol 2017; 10: 1212-1215.CuevaMHorsfallLThe contribution of microbially produced nanoparticles to sustainable development goalsMicrob Biotechnol2017101212121510.1111/1751-7915.12788560922628771979Search in Google Scholar

Marooufpour N, Alizadeh M, Hatami M, Lajayer BA. Chapter 3. Biosynthesis of nanoparticles by different groups of bacteria. In: R Prasad (ed.). Microbial Nanobionics Nanotechnology in the Life Sciences, Springer Nature Switzerland AG 2019: 63-85. available online at: https://doi.org/10.1007/978-3-030-16383-9_3MarooufpourNAlizadehMHatamiMLajayerBAChapter 3. Biosynthesis of nanoparticles by different groups of bacteriaInPrasadR(ed.)Microbial Nanobionics Nanotechnology in the Life Sciences, Springer Nature Switzerland AG20196385available online athttps://doi.org/10.1007/978-3-030-16383-9_310.1007/978-3-030-16383-9_3Search in Google Scholar

Hulkoti N, Taranath TC. Biosynthesis of nanoparticles using microbes. Coll Surf B Biointerfaces 2014; 121: 474-483.HulkotiNTaranathTCBiosynthesis of nanoparticles using microbesColl Surf B Biointerfaces201412147448310.1016/j.colsurfb.2014.05.02725001188Search in Google Scholar

Sharma D, Kanki S, Bisetty K. Biogenic synthesis of nanoparticles: A review. Arab J Chem 2015; 14(2): 299-310; available online at: https://doi.org/10.1016/j.arabjc.2015.11.002SharmaDKankiSBisettyKBiogenic synthesis of nanoparticles: A reviewArab J Chem2015142299310available online athttps://doi.org/10.1016/j.arabjc.2015.11.00210.1016/j.arabjc.2015.11.002Search in Google Scholar

Sre PR, Reka M, Poovazhagi R, Kumar MA, Murugesan K. Antibacterial and Cytotoxic Effect of Biologically Synthesized Silver Nanoparticles Using Aqueous Root Extract of Erythrina indica Lam. Spectrochim Acta A: Mol Biomol Spectrosc 2015; 135: 1137-1144. https://doi.org/10.1016/j.saa.2014.08.019SrePRRekaMPoovazhagiRKumarMAMurugesanKAntibacterial and Cytotoxic Effect of Biologically Synthesized Silver Nanoparticles Using Aqueous Root Extract of Erythrina indica LamSpectrochim Acta A: Mol Biomol Spectrosc201513511371144https://doi.org/10.1016/j.saa.2014.08.01910.1016/j.saa.2014.08.01925189525Search in Google Scholar

Ogar A, Tylko G, Turnau K. Antifungal Properties of Silver Nanoparticles against Indoor Mould Growth. Sci Total Environ 2015; 521: 305-314. https://doi.org/10.1016/j.scitotenv.2015.03.101OgarATylkoGTurnauKAntifungal Properties of Silver Nanoparticles against Indoor Mould GrowthSci Total Environ2015521305314https://doi.org/10.1016/j.scitotenv.2015.03.10110.1016/j.scitotenv.2015.03.10125847174Search in Google Scholar

Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications and toxicity effects. Int Nano Lett 2012; available online at: http://link.springer.com/article/10.1186/2228-5326-2-32/fulltext.htmlPrabhuSPouloseEKSilver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications and toxicity effects. Int Nano Lett2012available online athttp://link.springer.com/article/10.1186/2228-5326-2-32/fulltext.html10.1186/2228-5326-2-32Search in Google Scholar

Rajeshkumar S, Malarkodi C, Vanaja M, Annadurai G. Anticancer and Enhanced Antimicrobial Activity of Biosynthesized Silver Nanoparticles against Clinical Pathogens. J Mol Struct 2016; 1116: 165-173; available online at: https://doi.org/10.1016/j.molstruct.2016.03.044RajeshkumarSMalarkodiCVanajaMAnnaduraiGAnticancer and Enhanced Antimicrobial Activity of Biosynthesized Silver Nanoparticles against Clinical PathogensJ Mol Struct20161116165173available online athttps://doi.org/10.1016/j.molstruct.2016.03.04410.1016/j.molstruc.2016.03.044Search in Google Scholar

Shah S, Gaikwad S, Nagar S, Kulshrestha S, Vaidya V, Nawani N, Pawar S. Biofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticles against the nosocomial pathogen Pseudomonas aeruginosa Biofouling 2019; 35(1): 34-49. https://doi.org/10.1080/08927014.2018.1563686ShahSGaikwadSNagarSKulshresthaSVaidyaVNawaniNPawarSBiofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticles against the nosocomial pathogen Pseudomonas aeruginosaBiofouling20193513449https://doi.org/10.1080/08927014.2018.156368610.1080/08927014.2018.156368630727758Search in Google Scholar

De Man JC, Rogosa M, Sharpe ME. A medium for the cultivation of lactobacilli. J. Appl. Bacteriol 1960; 23: 130.DeMan JCRogosaMSharpeMEA medium for the cultivation of lactobacilliJ. Appl. Bacteriol19602313010.1111/j.1365-2672.1960.tb00188.xSearch in Google Scholar

Saifudin N, Wong W.C, Nur Yasumira AA. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. CODEN ECJHAO E-J Chem 2009; 6(1): 6170.SaifudinNWongW.CNurYasumira AARapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiationCODEN ECJHAO E-J Chem200961617010.1155/2009/734264Search in Google Scholar

Singh P, Raja RB. Biological synthesis and characterization of silver nanoparticles using the fungus Trichoderma harzianum Asian J Exp Biol Sci 2011; 2(4): 600-605.SinghPRajaRBBiological synthesis and characterization of silver nanoparticles using the fungus Trichoderma harzianumAsian J Exp Biol Sci201124600605Search in Google Scholar

Dwivedi AD, Gopal K. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf A Physicochem Eng Asp 2010; 369(1-3): 27-33.DwivediADGopalKBiosynthesis of silver and gold nanoparticles using Chenopodium album leaf extractColloids Surf A Physicochem Eng Asp20103691-3273310.1016/j.colsurfa.2010.07.020Search in Google Scholar

Woehrle G, Hutchinson J, Ozkar S, Finke R. Analysis of nanoparticle transmission electron microscopy data using a public-domain image-processing program, Image Turk J Chem 2006; 30: 1-13.WoehrleGHutchinsonJOzkarSFinkeRAnalysis of nanoparticle transmission electron microscopy data using a public-domain image-processing program, ImageTurk J Chem200630113Search in Google Scholar

Roy K, Sarkar CK, Gosh CK. Apium graveolens leaf extract-mediated synthesis of silver nanoparticles and its activity on pathogenic fungi. Dig J Nanomat Biostruct 2015; 10(2): 393-400.RoyKSarkarCKGoshCKApium graveolens leaf extract-mediated synthesis of silver nanoparticles and its activity on pathogenic fungiDig J Nanomat Biostruct2015102393400Search in Google Scholar

Thiruneelakandan G, Vidya S, Vinola J, Jayasudha S, Babu V, Sevasundhari L, Sivakami R, Anthoni SA. Antimicrobial activity of silver nanoparticles synthesized by marine Lactobacillus sp against multiple drug resistance pathogens. Sci Technol Arts Res J 2013; 2(4):5-9.ThiruneelakandanGVidyaSVinolaJJayasudhaSBabuVSevasundhariLSivakamiRAnthoniSAAntimicrobial activity of silver nanoparticles synthesized by marine Lactobacillus sp against multiple drug resistance pathogensSci Technol Arts Res J2013245910.4314/star.v2i4.2Search in Google Scholar

Ranganath E, Rathod V, Banu A. Screening of Lactobacillus spp., for mediating the biosynthesis of silver nanoparticles from silver nitrate. IOSR J Pharm 2012; 2(2): 237-241.RanganathERathodVBanuAScreening of Lactobacillus spp., for mediating the biosynthesis of silver nanoparticles from silver nitrateIOSR J Pharm20122223724110.9790/3013-0220237241Search in Google Scholar

Khoshnamvand M, Huo C, Liu J. Silver Nanoparticles Synthesized Using Allium ampeloprasum L. Leaf Extract: Characterization and Performance in Catalytic Reduction of 4-Nitrophenol and Antioxidant Activity. J Molec Struct 2019; 1175: 90-96. https://doi.org/10.1016/j.molstruc.2018.07.089KhoshnamvandMHuoCLiuJSilver Nanoparticles Synthesized Using Allium ampeloprasum LLeaf Extract: Characterization and Performance in Catalytic Reduction of 4-Nitrophenol and Antioxidant Activity. J Molec Struct201911759096https://doi.org/10.1016/j.molstruc.2018.07.08910.1016/j.molstruc.2018.07.089Search in Google Scholar

Sani NJ, Aminu BM, Mukhtar MD. Eco-friendly synthesis of silver nanoparticles using Lactobacillus delbruckii subsp. bulgaricus isolated from kindrimoo (locally fermented milk in Kano state, Nigeria. Bayero J Pure Appl Sci 2017; 10(1): 481-488.SaniNJAminuBMMukhtarMDEco-friendly synthesis of silver nanoparticles using Lactobacillus delbruckii subspbulgaricus isolated from kindrimoo (locally fermented milk in Kano state, Nigeria. Bayero J Pure Appl Sci201710148148810.4314/bajopas.v10i1.92SSearch in Google Scholar

Hussain A, Alajmi M, Khan M, Pervez S, Ahmed F, Amir S, Husain F, Khan M, Shaik G, Hassan I, Khan R, Rehman MT. Biosynthesized silver nanoparticle (AgNPs) from Pandanus odorifer leaf extract exhibits anti-metastasis and anti-biofilm potentials. Front Microbiol 2019; available online at: https://doi.org/10.3389/fmicb.2019.00008HussainAAlajmiMKhanMPervezSAhmedFAmirSHusainFKhanMShaikGHassanIKhanRRehmanMTBiosynthesized silver nanoparticle (AgNPs) from Pandanus odorifer leaf extract exhibits anti-metastasis and anti-biofilm potentialsFront Microbiol2019available online athttps://doi.org/10.3389/fmicb.2019.0000810.3389/fmicb.2019.00008639672430853939Search in Google Scholar

Nakamura S, Sato M, Sato Y, Ando N, Takayama T, Fujita M, Ishihara M. Synthesis and application of silver nanoparticles (AgNPs) for prevention of infection in healthcare workers. Int J Mol Sci 2019; 20, 3620, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695748/NakamuraSSatoMSatoYAndoNTakayamaTFujitaMIshiharaMSynthesis and application of silver nanoparticles (AgNPs) for prevention of infection in healthcare workersInt J Mol Sci2019203620https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695748/10.3390/ijms20153620669574831344881Search in Google Scholar

Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotech 2009; 4(10): 634-641.AuffanMRoseJBotteroJYLowryGVJolivetJPWiesnerMRTowards a definition of inorganic nanoparticles from an environmental, health and safety perspectiveNat Nanotech200941063464110.1038/nnano.2009.24219809453Search in Google Scholar

Mavaani K, Shah M. Synthesis of silver nanoparticles by using sodium borohydride as a reducing agent. Int J Eng Res Technol 2013; 2(3): 1-5.MavaaniKShahMSynthesis of silver nanoparticles by using sodium borohydride as a reducing agentInt J Eng Res Technol20132315Search in Google Scholar

Ivask A, Kurvet I, Kasemets K, Blinova I, Aruoja V, Suppi S, et al. Size-dependent toxicity of silver nanoparticles to bacteria, yeasts, algae, crustaceans and mammalian cells in vitro. PLoS One 2014;9(7):e102108. https://doi.org/10.1371/journal.pone.0102108IvaskAKurvetIKasemetsKBlinovaIAruojaVSuppiSet alSize-dependent toxicity of silver nanoparticles to bacteria, yeasts, algae, crustaceans and mammalian cells in vitroPLoS One201497e102108https://doi.org/10.1371/journal.pone.010210810.1371/journal.pone.0102108410557225048192Search in Google Scholar

Prabhu SS, Mohan RK, Sanhita P, Ravindran R. Production of bacteriocin and biosynthesis of silver nanoparticles by lactic acid bacteria isolated from yoghurt and its antibacterial activity. Scrut Int Res J Microbiol Bio Technol 2014; 1(3): 7-14.PrabhuSSMohanRKSanhitaPRavindranRProduction of bacteriocin and biosynthesis of silver nanoparticles by lactic acid bacteria isolated from yoghurt and its antibacterial activityScrut Int Res J Microbiol Bio Technol201413714Search in Google Scholar

Garmasheva I, Kovalenko N, Voychuk S, Ostapchuk A, Livins’ka O, Oleschenko L. Lactobacillus species mediated synthesis of silver nanoparticles and their antibacterial activity against opportunistic pathogens in vitro BioImpacts 2016; 6(4): 219-223.GarmashevaIKovalenkoNVoychukSOstapchukALivins’kaOOleschenkoLLactobacillus species mediated synthesis of silver nanoparticles and their antibacterial activity against opportunistic pathogens in vitroBioImpacts20166421922310.15171/bi.2016.29532667028265538Search in Google Scholar

Bhatnagar S, Kobori T, Ganesh D, Ogawa K, Aoyagi H. Biosynthesis of silver nanoparticles mediated by extracellular pigment from Thalaromyces purpurogenus and their biomedical applications. Nanomat 2019; 9, 1042. available online at: https://mdpi.com/2079-4991/9/7/1042BhatnagarSKoboriTGaneshDOgawaKAoyagiHBiosynthesis of silver nanoparticles mediated by extracellular pigment from Thalaromyces purpurogenus and their biomedical applicationsNanomat201991042available online athttps://mdpi.com/2079-4991/9/7/104210.3390/nano9071042666966431330905Search in Google Scholar

Paul S, Mohanram K, Kannan I. Antifungal activity of curcumin-silver nanoparticles against fluconazole-resistant clinical isolates of Candida species AYU 2018; 39(3): 182-186. available online at:https://wwww.ayujournal.org/text.asp?2018/39/3/182/255253PaulSMohanramKKannanIAntifungal activity of curcumin-silver nanoparticles against fluconazole-resistant clinical isolates of Candida speciesAYU2018393182186available online athttps://wwww.ayujournal.org/text.asp?2018/39/3/182/25525310.4103/ayu.AYU_24_18645490931000996Search in Google Scholar

Adebayo CO, Aderiye BI. Antifungal activity of bacteriocins of lactic acid bacteria from some Nigerian fermented foods. Res J Microbiol 2010; 5: 1070-1082.AdebayoCOAderiyeBIAntifungal activity of bacteriocins of lactic acid bacteria from some Nigerian fermented foodsRes J Microbiol201051070108210.3923/jm.2010.1070.1082Search in Google Scholar

Hussain F, Shaban S, Kim J, Kim DH. One-pot synthesis of highly stable and concentrated silver nanoparticles with enhanced catalytic activity. Korean J Chem Engineering 2019; 36(6): 988-995.HussainFShabanSKimJKimDHOne-pot synthesis of highly stable and concentrated silver nanoparticles with enhanced catalytic activityKorean J Chem Engineering201936698899510.1007/s11814-019-0270-6Search in Google Scholar

Arunkumar M, Suhashini K, Mahesh N, Ravikumar R. Quorum quenching and antibacterial activity of silver nanoparticles synthesized from Sargassum polyphylum Bangladesh J Pharmacol 2014; 9: 54-59.ArunkumarMSuhashiniKMaheshNRavikumarRQuorum quenching and antibacterial activity of silver nanoparticles synthesized from Sargassum polyphylumBangladesh J Pharmacol20149545910.3329/bjp.v9i1.17301Search in Google Scholar

Sheikh S, Tale V. Green synthesis of silver nanoparticles: its effect on quorum sensing inhibition of urinary tract infection pathogens. Asian J Pharm Clin Res 2017; 10(5): 302-305.SheikhSTaleVGreen synthesis of silver nanoparticles: its effect on quorum sensing inhibition of urinary tract infection pathogensAsian J Pharm Clin Res201710530230510.22159/ajpcr.2017.v10i5.16949Search in Google Scholar

Roy S, Mukherjee T, Chakraborty S, Kumar Das T. Biosynthesis, characterization & antifungal activity of silver nanoparticles synthesized by the fungus Aspergillus foetidus MTCC8876. Dig J Nanomat Biostruct 2013; 8(1): 197-205.RoySMukherjeeTChakrabortySKumarDas TBiosynthesis, characterization & antifungal activity of silver nanoparticles synthesized by the fungus Aspergillus foetidus MTCC8876Dig J Nanomat Biostruct201381197205Search in Google Scholar

Al-Zubaidi S, Al-Ayafi A, Abdelkader H. Biosynthesis, characterization and antifungal activity of silver nanoparticles by Aspergillus niger isolate. J Nanotechnol Res 2019; 1(1): 023-036.Al-ZubaidiSAl-AyafiAAbdelkaderHBiosynthesis, characterization and antifungal activity of silver nanoparticles by Aspergillus niger isolateJ Nanotechnol Res20191102303610.26502/jnr.2688-8521002Search in Google Scholar

Salman JAS. Synthesis of silver nanoparticles by some locally Lactobacillus spp. and detection of their antibacterial activity. Al-Mustansiriyah J Pharm Sci 2013; 13(2):164-173.SalmanJASSynthesis of silver nanoparticles by some locally Lactobacillus sppand detection of their antibacterial activity. Al-Mustansiriyah J Pharm Sci201313216417310.32947/ajps.v13i2.223Search in Google Scholar

Arjun TV, Bholay AD. Biosynthesis of silver nanoparticles and its antifungal activities. J Environ Res Develop 2012; 7(1A): 338-345.ArjunTVBholayADBiosynthesis of silver nanoparticles and its antifungal activitiesJ Environ Res Develop201271A338345Search in Google Scholar

Al-Zahrani SS, Al-Garni SM. Biosynthesis of Silver Nanoparticles from Allium ampeloprasum Leaves Extract and Its Antifungal Activity. J Biomat Nanobiotechnol 2019; 10(01): 11-25. https://file.scirp.org/pdf/JBNB_2019012317102817.pdfAl-ZahraniSSAl-GarniSMBiosynthesis of Silver Nanoparticles from Allium ampeloprasum Leaves Extract and Its Antifungal ActivityJ Biomat Nanobiotechnol201910011125https://file.scirp.org/pdf/JBNB_2019012317102817.pdf10.4236/jbnb.2019.101002Search in Google Scholar

Roy A, Balut O, Some S, Mandal Kumar A, Ylmaz D. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Advances 2019; 9: 2673-2702.RoyABalutOSomeSMandalKumar AYlmazDGreen synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activityRSC Advances201992673270210.1039/C8RA08982ESearch in Google Scholar

Siddiqi KS, Husen A, Rao R. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol 2018; 16: 14.SiddiqiKSHusenARaoRA review on biosynthesis of silver nanoparticles and their biocidal propertiesJ Nanobiotechnol2018161410.1186/s12951-018-0334-5581525329452593Search in Google Scholar

eISSN:
2564-615X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, other, Medicine, Biomedical Engineering, Physics, Nanotechnology, Biophysics