Open Access

Low-frequency ultrasound can drive the transport of nanoparticles and molecules in polymer gels for biotechnology applications


Cite

Figure 1

Apparatus used to measure the transport of tracer gold nanoparticles that as stimulated by low-frequency ultrasound. The block diagram of the components is drawn in panel A, and the actual gels+transducer is shown in panel B. The light path is illustrated with the dotted line, and was aimed to pass through the “receiver-gel” at a distance marked x below the interface with the “tracer-gel”. The numbers in panels A and B refer to the same components. (1=ultrasonic transducer, 2=”tracer-gel”, 3=”receiver-gel”, 4=glass microscope slide, 5=signal generator, 6=HeNe laser, 7=photodiode, 8=computer).
Apparatus used to measure the transport of tracer gold nanoparticles that as stimulated by low-frequency ultrasound. The block diagram of the components is drawn in panel A, and the actual gels+transducer is shown in panel B. The light path is illustrated with the dotted line, and was aimed to pass through the “receiver-gel” at a distance marked x below the interface with the “tracer-gel”. The numbers in panels A and B refer to the same components. (1=ultrasonic transducer, 2=”tracer-gel”, 3=”receiver-gel”, 4=glass microscope slide, 5=signal generator, 6=HeNe laser, 7=photodiode, 8=computer).

Figure 2

Measurement of transmittance of the “receiver-gel” at x=1mm depth from the interface with the “tracer-gel” that contained the gold nanoparticles.
Measurement of transmittance of the “receiver-gel” at x=1mm depth from the interface with the “tracer-gel” that contained the gold nanoparticles.

Figure 3

Measurement of transmittance of the “receiver-gel” at x=2mm depth from the interface with the “tracer-gel” that contained the gold nanoparticles.
Measurement of transmittance of the “receiver-gel” at x=2mm depth from the interface with the “tracer-gel” that contained the gold nanoparticles.

Figure 4

SEM image of the “receiver-gel” from the diffusion experiment shown in Fig. 1. For the purposes of the SEM imaging the gel was dehydrated. The electron-dense particles (light grey colour) are at the surface of the dehydrated gel. The arrows point to particles that are most likely to be gold, with the alrger particles most likely to be crystals of chemicals used in the buffer solutions (see text for explanation).
SEM image of the “receiver-gel” from the diffusion experiment shown in Fig. 1. For the purposes of the SEM imaging the gel was dehydrated. The electron-dense particles (light grey colour) are at the surface of the dehydrated gel. The arrows point to particles that are most likely to be gold, with the alrger particles most likely to be crystals of chemicals used in the buffer solutions (see text for explanation).

Figure 5

SEM/EDS analysis of the smaller particles observed in the dehydrated gels shown in Figure 4. The EDS analysis in panel B is of the particle imaged by SEM in panel A. The analysis shows that the composition of the particle in panel A is gold.
SEM/EDS analysis of the smaller particles observed in the dehydrated gels shown in Figure 4. The EDS analysis in panel B is of the particle imaged by SEM in panel A. The analysis shows that the composition of the particle in panel A is gold.

Figure 6

Measurement of transmittance of the “receiver-gel” at x=1mm depth from the interface with the “tracer-gel” that did not contain any gold nanoparticles.
Measurement of transmittance of the “receiver-gel” at x=1mm depth from the interface with the “tracer-gel” that did not contain any gold nanoparticles.

Figure 7A

Masson-stained section of a posterior area of a rabbit eye into which bevacizumab was delivered from the “tracer-gel”. The sclera is stained bright blue and the retina, epithelia and muscle stained crimson. The retina and choroid have separated from the sclera.
Masson-stained section of a posterior area of a rabbit eye into which bevacizumab was delivered from the “tracer-gel”. The sclera is stained bright blue and the retina, epithelia and muscle stained crimson. The retina and choroid have separated from the sclera.

Figure 7B

Masson-stained section of the limbal region of a rabbit eye into which bevacizumab was delivered from the “tracer-gel”. The sclera and cornea are stained bright blue and the retina, epithelia and muscle stained crimson. The retina and choroid have separated from the sclera.
Masson-stained section of the limbal region of a rabbit eye into which bevacizumab was delivered from the “tracer-gel”. The sclera and cornea are stained bright blue and the retina, epithelia and muscle stained crimson. The retina and choroid have separated from the sclera.

Figure 8

Sections of the retina and sclera around the posterior pole of the rabbit eyes. In all panels the retina is marked “ret” and the sclera is marked “scl”. (A) bevacizumab, free in gel (rabbit 1, left eye), (B) bevacizumab, in liposomes (rabbit 1, right eye), (C) negative control (rabbit 2, left eye), (D) ranibizumab, free in gel (rabbit 2, right eye), (E) verteporfin, direct injection into vitreous chamber (rabbit 3, left eye), (F) verteporfin, in liposomes (rabbit 3, right eye).
Sections of the retina and sclera around the posterior pole of the rabbit eyes. In all panels the retina is marked “ret” and the sclera is marked “scl”. (A) bevacizumab, free in gel (rabbit 1, left eye), (B) bevacizumab, in liposomes (rabbit 1, right eye), (C) negative control (rabbit 2, left eye), (D) ranibizumab, free in gel (rabbit 2, right eye), (E) verteporfin, direct injection into vitreous chamber (rabbit 3, left eye), (F) verteporfin, in liposomes (rabbit 3, right eye).
eISSN:
2564-615X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, other, Medicine, Biomedical Engineering, Physics, Nanotechnology, Biophysics