Cite

Iavicoli I, Leso V, Ricciardi W, Hodson LL, Hoover MD. Opportunities and challenges of nanotechnology in the green economy. Environ Health 2014; 13:78.10.1186/1476-069X-13-7825294341IavicoliILesoVRicciardiWHodsonLLHooverMDOpportunities and challenges of nanotechnology in the green economyEnviron Health20141378420172725294341Open DOISearch in Google Scholar

Hutchison JE. The Road to Sustainable Nanotechnology: Challenges, Progress and Opportunities. ACS Sustain Chem Eng 2016; 4:5907-5914.10.1021/acssuschemeng.6b02121HutchisonJEThe Road to Sustainable Nanotechnology: Challenges, Progress and OpportunitiesACS Sustain Chem Eng2016459075914Open DOISearch in Google Scholar

Cheng HN, Doemeny LJ, Geraci CL, Grob Schmidt D. Nanotechnology Overview: Opportunities and Challenges. Nanotechnology: Delivering on the Promise Volume 1. Volume 1220: American Chemical Society, 2016:1-12.ChengHNDoemenyLJGeraciCLGrob SchmidtDNanotechnology Overview: Opportunities and Challenges. Nanotechnology: Delivering on the Promise Volume 1. Volume 1220American Chemical Society201611210.1021/bk-2016-1220Search in Google Scholar

Purohit R, Mittal A, Dalela S, Warudkar V, Purohit K, Purohit S. Social, Environmental and Ethical Impacts of Nanotechnology. Materials Today: Proceedings 2017; 4:5461-5467.PurohitRMittalADalelaSWarudkarVPurohitKPurohitSSocial, Environmental and Ethical Impacts of NanotechnologyMaterials Today: Proceedings201745461546710.1016/j.matpr.2017.05.058Search in Google Scholar

Di Sia P. Nanotechnology Among Innovation, Health and Risks. Procedia Soc Beh Sci 2017; 237:1076-1080.10.1016/j.sbspro.2017.02.158Di SiaPNanotechnology Among Innovation, Health and RisksProcedia Soc Beh Sci201723710761080Open DOISearch in Google Scholar

Harifi T, Montazer M. Application of nanotechnology in sports clothing and flooring for enhanced sport activities, performance, efficiency and comfort: a review. J Ind Text 2015; 46:1147-1169.HarifiTMontazerMApplication of nanotechnology in sports clothing and flooring for enhanced sport activities, performance, efficiency and comfort: a reviewJ Ind Text2015461147116910.1177/1528083715601512Search in Google Scholar

Beck B, Blanpain C. Unravelling cancer stem cell potential. Nat Rev Cancer 2013; 13:727-38.10.1038/nrc359724060864BeckBBlanpainCUnravelling cancer stem cell potentialNat Rev Cancer2013137273824060864Open DOISearch in Google Scholar

Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomed 2017; 12:2957-2978.10.2147/IJN.S127683JahangirianHLemraskiEGWebsterTJRafiee-MoghaddamRAbdollahiYA review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicineInt J Nanomed20171229572978539697628442906Open DOISearch in Google Scholar

Dilnawaz F, Acharya S, Sahoo SK. Recent trends of nanomedicinal approaches in clinics. Int J Pharm 2018; 538:263-278.2933924810.1016/j.ijpharm.2018.01.016DilnawazFAcharyaSSahooSKRecent trends of nanomedicinal approaches in clinicsInt J Pharm201853826327829339248Search in Google Scholar

Paccez JD, et al. The receptor tyrosine kinase Axl is an essential regulator of prostate cancer proliferation and tumor growth and represents a new therapeutic target. Oncogene 2013; 32:689-98.2241077510.1038/onc.2012.89PaccezJDet alThe receptor tyrosine kinase Axl is an essential regulator of prostate cancer proliferation and tumor growth and represents a new therapeutic targetOncogene20133268998407810022410775Search in Google Scholar

Rajamani D, Bhasin MK. Identification of key regulators of pancreatic cancer progression through multidimensional systems-level analysis. Genome Med 2016; 8:38.2713721510.1186/s13073-016-0282-3RajamaniDBhasinMKIdentification of key regulators of pancreatic cancer progression through multidimensional systems-level analysisGenome Med2016838485385227137215Search in Google Scholar

Arredouani MS, et al. Identification of the transcription factor single- minded homologue 2 as a potential biomarker and immunotherapy target in prostate cancer. Clin Cancer Res 2009; 15:5794-802.1973796010.1158/1078-0432.CCR-09-0911ArredouaniMSet alIdentification of the transcription factor single- minded homologue 2 as a potential biomarker and immunotherapy target in prostate cancerClin Cancer Res2009155794802557315119737960Search in Google Scholar

Kumar B, Jalodia K, Kumar P, Gautam HK. Recent advances in nanoparticle- mediated drug delivery. J Drug Deliv Sci Technol 2017; 41:260-268.10.1016/j.jddst.2017.07.019KumarBJalodiaKKumarPGautamHKRecent advances in nanoparticle- mediated drug deliveryJ Drug Deliv Sci Technol201741260268Open DOISearch in Google Scholar

Jindal AB. The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles. Int J Pharm 2017; 532:450-465.10.1016/j.ijpharm.2017.09.02828917985JindalABThe effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticlesInt J Pharm201753245046528917985Open DOISearch in Google Scholar

Sundar DS, Antoniraj MG, Kumar CS, Mohapatra SS, Houreld NN, Ruckmani K. Recent Trends of Biocompatible and Biodegradable Nanoparticles in Drug Delivery: A Review. Curr Med Chem 2016; 23:3730-3751.10.2174/092986732366616060710385427281132SundarDSAntonirajMGKumarCSMohapatraSSHoureldNNRuckmaniKRecent Trends of Biocompatible and Biodegradable Nanoparticles in Drug Delivery: A ReviewCurr Med Chem2016233730375127281132Open DOISearch in Google Scholar

Mukherjee B, Dutta L, Mondal L, Dey NS, Chakraborty S, Maji R, Shaw TK. Nanoscale Formulations and Diagnostics With Their Recent Trends: A Major Focus of Future Nanotechnology. Curr Pharm Des 2015; 21:5172-86.10.2174/1381612821666150923094911MukherjeeBDuttaLMondalLDeyNSChakrabortySMajiRShawTKNanoscale Formulations and Diagnostics With Their Recent Trends: A Major Focus of Future NanotechnologyCurr Pharm Des20152151728626412361Open DOISearch in Google Scholar

Tayo LL. Stimuli-responsive nanocarriers for intracellular delivery. Biophys Rev 2017; 9:931-940.10.1007/s12551-017-0341-z29178081TayoLLStimuli-responsive nanocarriers for intracellular deliveryBiophys Rev20179931940571170329178081Open DOISearch in Google Scholar

Safari J, Zarnegar Z. Advanced drug delivery systems: Nanotechnology of health design A review. J Saudi Chem Soc 2014; 18:85-99.10.1016/j.jscs.2012.12.009SafariJZarnegarZAdvanced drug delivery systems: Nanotechnology of health design A reviewJ Saudi Chem Soc2014188599Open DOISearch in Google Scholar

Howell M, Wang C, Mahmoud A, Hellermann G, Mohapatra SS, Mohapatra S. Dual-function theranostic nanoparticles for drug delivery and medical imaging contrast: perspectives and challenges for use in lung diseases. Drug Deliv Trans Res 2013; 3:352-363.10.1007/s13346-013-0132-4HowellMWangCMahmoudAHellermannGMohapatraSSMohapatraSDual-function theranostic nanoparticles for drug delivery and medical imaging contrast: perspectives and challenges for use in lung diseasesDrug Deliv Trans Res20133352363373659523936754Open DOISearch in Google Scholar

Wang C, et al. A chitosan-modified graphene nanogel for noninvasive controlled drug release. Nanomedicine 2013; 9:903-11.2335280210.1016/j.nano.2013.01.003WangCet alA chitosan-modified graphene nanogel for noninvasive controlled drug releaseNanomedicine2013990311378396623352802Search in Google Scholar

Williams EC, Toomey R, Alcantar N. Controlled release niosome embedded chitosan system: effect of crosslink mesh dimensions on drug release. J Biomed Mater Res A 2012; 100:3296-303.22733611WilliamsECToomeyRAlcantarNControlled release niosome embedded chitosan system: effect of crosslink mesh dimensions on drug releaseJ Biomed Mater Res A2012100329630310.1002/jbm.a.3427522733611Search in Google Scholar

Denmark DJ, et al. Remote triggering of thermoresponsive PNIPAM by iron oxide nanoparticles. RSC Advances 2016; 6:5641-5652.10.1039/C5RA21617FDenmarkDJet alRemote triggering of thermoresponsive PNIPAM by iron oxide nanoparticlesRSC Advances2016656415652Open DOISearch in Google Scholar

Liu M, Du H, Zhang W, Zhai G. Internal stimuli-responsive nanocarriers for drug delivery: Design strategies and applications. Mater Sci Eng: C 2017; 71:1267-1280.10.1016/j.msec.2016.11.030LiuMDuHZhangWZhaiGInternal stimuli-responsive nanocarriers for drug delivery: Design strategies and applicationsMater Sci Eng: C2017711267128027987683Open DOISearch in Google Scholar

Walsh DP, et al. Bioinspired Star-Shaped Poly(l-lysine) Polypeptides: Efficient Polymeric Nanocarriers for the Delivery of DNA to Mesenchymal Stem Cells. Mol Pharm 2018; 15:1878-1891.10.1021/acs.molpharmaceut.8b0004429590755WalshDPet alBioinspired Star-Shaped Poly(l-lysine) Polypeptides: Efficient Polymeric Nanocarriers for the Delivery of DNA to Mesenchymal Stem CellsMol Pharm2018151878189129590755Open DOISearch in Google Scholar

Wei Z, et al. The diosgenin prodrug nanoparticles with pH-responsive as a drug delivery system uniquely prevents thrombosis without increased bleeding risk. Nanomedicine 2018; 14:673-684.2930991010.1016/j.nano.2017.12.019WeiZet alThe diosgenin prodrug nanoparticles with pH-responsive as a drug delivery system uniquely prevents thrombosis without increased bleeding riskNanomedicine20181467368429309910Search in Google Scholar

Boyapalle S, Xu W, Raulji P, Mohapatra S, Mohapatra SS. A Multiple siRNA-Based Anti-HIV/SHIV Microbicide Shows Protection in Both In Vitro and In Vivo Models. PLoS One 2015; 10:e0135288.2640708010.1371/journal.pone.0135288BoyapalleSXuWRauljiPMohapatraSMohapatraSSA Multiple siRNA-Based Anti-HIV/SHIV Microbicide Shows Protection in Both In Vitro and In Vivo ModelsPLoS One201510e0135288458345926407080Search in Google Scholar

Lee DW, Shirley SA, Lockey RF, Mohapatra SS. Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline. Respir Res 2006; 7:112.1693049010.1186/1465-9921-7-112LeeDWShirleySALockeyRFMohapatraSSThiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophyllineRespir Res20067112157035616930490Search in Google Scholar

Lee D, Zhang W, Shirley SA, Kong X, Hellermann GR, Lockey RF, Mohapatra SS. Thiolated chitosan/DNA nanocomplexes exhibit enhanced and sustained gene delivery. Pharm Res 2007; 24:157-67.17103334LeeDZhangWShirleySAKongXHellermannGRLockeyRFMohapatraSSThiolated chitosan/DNA nanocomplexes exhibit enhanced and sustained gene deliveryPharm Res2007241576710.1007/s11095-006-9136-917103334Search in Google Scholar

Yang SD, et al. Binary-copolymer system base on low-density lipoprotein- coupled N-succinyl chitosan lipoic acid micelles for co-delivery MDR1 siRNA and paclitaxel, enhances antitumor effects via reducing drug. J Biomed Mater Res B Appl Biomater 2017; 105:1114-1125.2700816310.1002/jbm.b.33636YangSDet alBinary-copolymer system base on low-density lipoprotein- coupled N-succinyl chitosan lipoic acid micelles for co-delivery MDR1 siRNA and paclitaxel, enhances antitumor effects via reducing drugJ Biomed Mater Res B Appl Biomater20171051114112527008163Search in Google Scholar

Das M, Howell M, Foran EA, Iyre R, Mohapatra SS, Mohapatra S. Sertoli Cells Loaded with Doxorubicin in Lipid Micelles Reduced Tumor Burden and Dox-Induced Toxicity. Cell Transplant 2017; 26:1694-1702.2925110810.1177/0963689717721223DasMHowellMForanEAIyreRMohapatraSSMohapatraSSertoli Cells Loaded with Doxorubicin in Lipid Micelles Reduced Tumor Burden and Dox-Induced ToxicityCell Transplant20172616941702575397629251108Search in Google Scholar

Zhang Y, Li N, Suh H, Irvine DJ. Nanoparticle anchoring targets immune agonists to tumors enabling anti-cancer immunity without systemic toxicity. Nat Comm 2018; 9:6.10.1038/s41467-017-02251-3ZhangYLiNSuhHIrvineDJNanoparticle anchoring targets immune agonists to tumors enabling anti-cancer immunity without systemic toxicityNat Comm201896575023729295974Open DOISearch in Google Scholar

Liu L, Ye Q, Lu M, Chen ST, Tseng HW, Lo YC, Ho C. A New Approach to Deliver Anti-cancer Nanodrugs with Reduced Off-target Toxicities and Improved Efficiency by Temporarily Blunting the Reticuloendothelial System with Intralipid. Sci Rep 2017; 7:16106.2917048210.1038/s41598-017-16293-6LiuLYeQLuMChenSTTsengHWLoYCHoCA New Approach to Deliver Anti-cancer Nanodrugs with Reduced Off-target Toxicities and Improved Efficiency by Temporarily Blunting the Reticuloendothelial System with IntralipidSci Rep2017716106570102829170482Search in Google Scholar

Germain M, et al. Priming the body to receive the therapeutic agent to redefine treatment benefit/risk profile. Sci Rep 2018; 8:4797.10.1038/s41598-018-23140-929556068GermainMet alPriming the body to receive the therapeutic agent to redefine treatment benefit/risk profileSci Rep201884797585913129556068Open DOISearch in Google Scholar

Chandan R, Banerjee R. Pro-apoptotic liposomes-nanobubble conjugate synergistic with paclitaxel: a platform for ultrasound responsive image-guided drug delivery. Sci Rep 2018; 8:2624.2942267610.1038/s41598-018-21084-8ChandanRBanerjeeRPro-apoptotic liposomes-nanobubble conjugate synergistic with paclitaxel: a platform for ultrasound responsive image-guided drug deliverySci Rep201882624580567429422676Search in Google Scholar

Hurwitz SN, Nkosi D, Conlon MM, York SB, Liu X, Tremblay DC, Meckes DG, Jr. CD63 Regulates Epstein-Barr Virus LMP1 Exosomal Packaging, Enhancement of Vesicle Production, and Noncanonical NF-kappaB Signaling. J Virol 2017; 91.HurwitzSNNkosiDConlonMMYorkSBLiuXTremblayDCMeckesDG JrCD63 Regulates Epstein-Barr Virus LMP1 Exosomal Packaging, Enhancement of Vesicle Production, and Noncanonical NF-kappaB SignalingJ Virol20179110.1128/JVI.02251-16530996027974566Search in Google Scholar

Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG, Jr. Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. Oncotarget 2016; 7:86999-87015.27894104HurwitzSNRiderMABundyJLLiuXSinghRKMeckesDG JrProteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkersOncotarget20167869998701510.18632/oncotarget.13569534133127894104Search in Google Scholar

Hurwitz SN, Conlon MM, Rider MA, Brownstein NC, Meckes DG, Jr. Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis. J Extracell Vesicles 2016; 5:31295.10.3402/jev.v5.3129527421995HurwitzSNConlonMMRiderMABrownsteinNCMeckesDG JrNanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesisJ Extracell Vesicles2016531295494719727421995Open DOISearch in Google Scholar

Minghua W, et al. Plasma exosomes induced by remote ischaemic preconditioning attenuate myocardial ischaemia/reperfusion injury by transferring miR-24. Cell Death Dis 2018; 9:320.10.1038/s41419-018-0274-x29476052MinghuaWet alPlasma exosomes induced by remote ischaemic preconditioning attenuate myocardial ischaemia/reperfusion injury by transferring miR-24Cell Death Dis20189320583373829476052Open DOISearch in Google Scholar

Amolegbe SA, et al. Mesoporous silica nanocarriers encapsulated antimalarials with high therapeutic performance. Sci Rep 2018; 8:3078.10.1038/s41598-018-21351-829449583AmolegbeSAet alMesoporous silica nanocarriers encapsulated antimalarials with high therapeutic performanceSci Rep201883078581445529449583Open DOISearch in Google Scholar

Mandal T, Beck M, Kirsten N, Linden M, Buske C. Targeting murine leukemic stem cells by antibody functionalized mesoporous silica nanoparticles. Sci Rep 2018; 8:989.10.1038/s41598-017-18932-429343865MandalTBeckMKirstenNLindenMBuskeCTargeting murine leukemic stem cells by antibody functionalized mesoporous silica nanoparticlesSci Rep20188989577236629343865Open DOISearch in Google Scholar

Farooq MU, et al. Gold Nanoparticles-enabled Efficient Dual Delivery of Anticancer Therapeutics to HeLa Cells. Sci Rep 2018; 8:2907.2944069810.1038/s41598-018-21331-yFarooqMUet alGold Nanoparticles-enabled Efficient Dual Delivery of Anticancer Therapeutics to HeLa CellsSci Rep201882907581150429440698Search in Google Scholar

Ramalingam V, Varunkumar K, Ravikumar V, Rajaram R. Target de livery of doxorubicin tethered with PVP stabilized gold nanoparticles for effective treatment of lung cancer. Sci Rep 2018; 8:3815.10.1038/s41598-018-22172-5RamalingamVVarunkumarKRavikumarVRajaramRTarget de livery of doxorubicin tethered with PVP stabilized gold nanoparticles for effective treatment of lung cancerSci Rep201883815583060729491463Open DOISearch in Google Scholar

Lian X, Erazo-Oliveras A, Pellois JP, Zhou HC. High efficiency and long-term intracellular activity of an enzymatic nanofactory based on metal-organic frameworks. Nat Comm 2017; 8:2075.10.1038/s41467-017-02103-0LianXErazo-OliverasAPelloisJPZhouHCHigh efficiency and long-term intracellular activity of an enzymatic nanofactory based on metal-organic frameworksNat Comm201782075572712329234027Open DOISearch in Google Scholar

Tiwari A, Singh A, Garg N, Randhawa JK. Curcumin encapsulated zeolitic imidazolate frameworks as stimuli responsive drug delivery system and their interaction with biomimetic environment. Sci Rep 2017; 7:12598.10.1038/s41598-017-12786-628974697TiwariASinghAGargNRandhawaJKCurcumin encapsulated zeolitic imidazolate frameworks as stimuli responsive drug delivery system and their interaction with biomimetic environmentSci Rep2017712598562669628974697Open DOISearch in Google Scholar

Shin CS, Marcano DC, Park K, Acharya G. Application of Hydrogel Template Strategy in Ocular Drug Delivery. Methods Mol Biol 2017; 1570:279-285.2823814410.1007/978-1-4939-6840-4_19ShinCSMarcanoDCParkKAcharyaGApplication of Hydrogel Template Strategy in Ocular Drug DeliveryMethods Mol Biol2017157027928528238144Search in Google Scholar

Coursey TG, et al. Dexamethasone nanowafer as an effective therapy for dry eye disease. J Control Release 2015; 213:168-174.2618405110.1016/j.jconrel.2015.07.007CourseyTGet alDexamethasone nanowafer as an effective therapy for dry eye diseaseJ Control Release201521316817426184051Search in Google Scholar

Chen W, et al. Microneedle-array patches loaded with dual mineralized protein/peptide particles for type 2 diabetes therapy. Nat Comm 2017; 8:1777.10.1038/s41467-017-01764-1ChenWet alMicroneedle-array patches loaded with dual mineralized protein/peptide particles for type 2 diabetes therapyNat Comm201781777570115029176623Open DOISearch in Google Scholar

Karabin NB, et al. Sustained micellar delivery via inducible transitions in nanostructure morphology. Nat Comm 2018; 9:624.10.1038/s41467-018-03001-9KarabinNBet alSustained micellar delivery via inducible transitions in nanostructure morphologyNat Comm20189624580948929434200Open DOISearch in Google Scholar

Chaudhari AA, et al. Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review. Int J Mol Sci 2016; 17.ChaudhariAAet alFuture Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A ReviewInt J Mol Sci20161710.3390/ijms17121974518777427898014Search in Google Scholar

Farris AL, Rindone AN, Grayson WL. Oxygen Delivering Biomaterials for Tissue Engineering. J Mater Chem B 2016; 4:3422-3432.10.1039/C5TB02635K27453782FarrisALRindoneANGraysonWLOxygen Delivering Biomaterials for Tissue EngineeringJ Mater Chem B2016434223432495595127453782Open DOISearch in Google Scholar

Akintewe OO, DuPont SJ, Elineni KK, Cross MC, Toomey RG, Gallant ND. Shape-changing hydrogel surfaces trigger rapid release of patterned tissue modules. Acta Biomater 2015; 11:96-103.10.1016/j.actbio.2014.09.04025266505AkinteweOODuPontSJElineniKKCrossMCToomeyRGGallantNDShape-changing hydrogel surfaces trigger rapid release of patterned tissue modulesActa Biomater2015119610325266505Open DOISearch in Google Scholar

Affram K, Udofot O, Cat A, Agyare E. In vitro and in vivo antitumor activity of gemcitabine loaded thermosensitive liposomal nanoparticles and mild hyperthermia in pancreatic cancer. Int J Adv Res 2015; 3:859-874.AfframKUdofotOCatAAgyareEIn vitro and in vivo antitumor activity of gemcitabine loaded thermosensitive liposomal nanoparticles and mild hyperthermia in pancreatic cancerInt J Adv Res20153859874Search in Google Scholar

Affram K, Udofot O, Agyare E. Cytotoxicity of gemcitabine-loaded thermosensitive liposomes in pancreatic cancer cell lines. Integr Cancer Sci Ther 2015; 2:133-142.26090123AfframKUdofotOAgyareECytotoxicity of gemcitabine-loaded thermosensitive liposomes in pancreatic cancer cell linesIntegr Cancer Sci Ther2015213314210.15761/ICST.1000150Search in Google Scholar

Howell M, Mallela J, Wang C, Ravi S, Dixit S, Garapati U, Mohapatra S. Manganese-loaded lipid-micellar theranostics for simultaneous drug and gene delivery to lungs. J Control Release 2013; 167:210-8.10.1016/j.jconrel.2013.01.02923395689HowellMMallelaJWangCRaviSDixitSGarapatiUMohapatraSManganese-loaded lipid-micellar theranostics for simultaneous drug and gene delivery to lungsJ Control Release20131672108378396123395689Open DOISearch in Google Scholar

Martinez JO, et al. Biomimetic nanoparticles with enhanced affinity towards activated endothelium as versatile tools for theranostic drug delivery. Theranostics 2018; 8:1131-1145.2946400410.7150/thno.22078MartinezJOet alBiomimetic nanoparticles with enhanced affinity towards activated endothelium as versatile tools for theranostic drug deliveryTheranostics2018811311145581711529464004Search in Google Scholar

Sanchez-Ramos J, et al. Chitosan-Mangafodipir nanoparticles designed for intranasal delivery of siRNA and DNA to brain. J Drug Deliv Sci Technol 2018; 43:453-460.10.1016/j.jddst.2017.11.01329805475Sanchez-RamosJet alChitosan-Mangafodipir nanoparticles designed for intranasal delivery of siRNA and DNA to brainJ Drug Deliv Sci Technol201843453460596785329805475Open DOISearch in Google Scholar

Das M, Wang C, Bedi R, Mohapatra SS, Mohapatra S. Magnetic micelles for DNA delivery to rat brains after mild traumatic brain injury. Nanomedicine 2014; 10:1539-48.10.1016/j.nano.2014.01.00324486465DasMWangCBediRMohapatraSSMohapatraSMagnetic micelles for DNA delivery to rat brains after mild traumatic brain injuryNanomedicine201410153948433891924486465Open DOISearch in Google Scholar

Wang C, et al. Dual-purpose magnetic micelles for MRI and gene delivery. J Control Release 2012; 163:82-92.10.1016/j.jconrel.2012.04.03022561339WangCet alDual-purpose magnetic micelles for MRI and gene deliveryJ Control Release20121638292363230222561339Open DOISearch in Google Scholar

Wang C, et al. Multifunctional Chitosan Magnetic-Graphene (CMG) Nanoparticles: a Theranostic Platform for Tumor-targeted Co-delivery of Drugs, Genes and MRI Contrast Agents. J Mater Chem B 2013; 1:4396-4405.10.1039/c3tb20452a24883188WangCet alMultifunctional Chitosan Magnetic-Graphene (CMG) Nanoparticles: a Theranostic Platform for Tumor-targeted Co-delivery of Drugs, Genes and MRI Contrast AgentsJ Mater Chem B2013143964405403682624883188Open DOISearch in Google Scholar

Varna M, Xuan HV, Fort E. Gold nanoparticles in cardiovascular imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018; 10.VarnaMXuanHVFortEGold nanoparticles in cardiovascular imagingWiley Interdiscip Rev Nanomed Nanobiotechnol20181010.1002/wnan.147028382729Search in Google Scholar

Liu Y, Zhang P, Li F, Jin X, Li J, Chen W, Li Q. Metal-based NanoEnhancers for Future Radiotherapy: Radiosensitizing and Synergistic Effects on Tumor Cells. Theranostics 2018; 8:1824-1849.10.7150/thno.2217229556359LiuYZhangPLiFJinXLiJChenWLiQMetal-based NanoEnhancers for Future Radiotherapy: Radiosensitizing and Synergistic Effects on Tumor CellsTheranostics2018818241849585850329556359Open DOISearch in Google Scholar

Das R, et al. Boosted Hyperthermia Therapy by Combined AC Magnetic and Photothermal Exposures in Ag/Fe3O4 Nanoflowers. ACS Appl Mater Interfaces 2016; 8:25162-9.2758941010.1021/acsami.6b09942DasRet alBoosted Hyperthermia Therapy by Combined AC Magnetic and Photothermal Exposures in Ag/Fe3O4 NanoflowersACS Appl Mater Interfaces2016825162927589410Search in Google Scholar

Usov NA, Nesmeyanov MS, Tarasov VP. Magnetic Vortices as Efficient Nano Heaters in Magnetic Nanoparticle Hyperthermia. Sci Rep 2018; 8:1224.10.1038/s41598-017-18162-829352175UsovNANesmeyanovMSTarasovVPMagnetic Vortices as Efficient Nano Heaters in Magnetic Nanoparticle HyperthermiaSci Rep201881224577537029352175Open DOISearch in Google Scholar

Zhang L, et al. Bioinspired Multifunctional Melanin-Based Nanoliposome for Photoacoustic/Magnetic Resonance Imaging-Guided Efficient Photothermal Ablation of Cancer. Theranostics 2018; 8:1591-1606.2955634310.7150/thno.22430ZhangLet alBioinspired Multifunctional Melanin-Based Nanoliposome for Photoacoustic/Magnetic Resonance Imaging-Guided Efficient Photothermal Ablation of CancerTheranostics2018815911606585816929556343Search in Google Scholar

Yang G, et al. Smart Nanoreactors for pH-Responsive Tumor Homing, Mitochondria-Targeting, and Enhanced Photodynamic-Immunotherapy of Cancer. Nano letters 2018; 18:2475-2484.2956513910.1021/acs.nanolett.8b00040YangGet alSmart Nanoreactors for pH-Responsive Tumor Homing, Mitochondria-Targeting, and Enhanced Photodynamic-Immunotherapy of CancerNano letters2018182475248429565139Search in Google Scholar

Wang H, et al. Targeted production of reactive oxygen species in mitochondria to overcome cancer drug resistance. Nat Comm 2018; 9:562.10.1038/s41467-018-02915-8WangHet alTargeted production of reactive oxygen species in mitochondria to overcome cancer drug resistanceNat Comm20189562580573129422620Open DOISearch in Google Scholar

Mo R, Gu Z. Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Materials Today 2016; 19:274-283.10.1016/j.mattod.2015.11.025MoRGuZTumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug deliveryMaterials Today201619274283Open DOISearch in Google Scholar

Nahire R, et al. Multifunctional polymersomes for cytosolic delivery of gemcitabine and doxorubicin to cancer cells. Biomaterials 2014; 35:6482-6497.2479787810.1016/j.biomaterials.2014.04.026NahireRet alMultifunctional polymersomes for cytosolic delivery of gemcitabine and doxorubicin to cancer cellsBiomaterials20143564826497405950824797878Search in Google Scholar

Owens EA, et al. Near-Infrared Illumination of Native Tissues for Image-Guided Surgery. J Med Chem 2016; 59:5311-5323.10.1021/acs.jmedchem.6b0003827100476OwensEAet alNear-Infrared Illumination of Native Tissues for Image-Guided SurgeryJ Med Chem20165953115323573307427100476Open DOISearch in Google Scholar

Hiroshima Y, et al. Effective fluorescence-guided surgery of liver metastasis using a fluorescent anti-CEA antibody. J Surg Oncol 2016; 114:951-958.2769644810.1002/jso.24462HiroshimaYet alEffective fluorescence-guided surgery of liver metastasis using a fluorescent anti-CEA antibodyJ Surg Oncol2016114951958556587927696448Search in Google Scholar

Matsumoto T, et al. A Mouse Model of Fluorescent Protein-expressing Disseminated Peritoneal Lymphoma for Fluorescence-guided Surgery. Anticancer Res 2016; 36:4483-7.10.21873/anticanres.1099327630285MatsumotoTet alA Mouse Model of Fluorescent Protein-expressing Disseminated Peritoneal Lymphoma for Fluorescence-guided SurgeryAnticancer Res2016364483727630285Open DOISearch in Google Scholar

Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 2015; 200:138-57.10.1016/j.jconrel.2014.12.03025545217WickiAWitzigmannDBalasubramanianVHuwylerJNanomedicine in cancer therapy: challenges, opportunities, and clinical applicationsJ Control Release20152001385725545217Open DOISearch in Google Scholar

Bernthal NM, et al. Combined in vivo optical and microCT imaging to monitor infection, inflammation, and bone anatomy in an orthopaedic implant infection in mice. J Vis Exp 2014:e51612.BernthalNMet alCombined in vivo optical and microCT imaging to monitor infection, inflammation, and bone anatomy in an orthopaedic implant infection in miceJ Vis Exp2014e5161210.3791/51612448081725350287Search in Google Scholar

Hu Q, Li H, Wang L, Gu H, Fan C. DNA Nanotechnology-Enabled Drug Delivery Systems. Chem Rev 2018.29465222HuQLiHWangLGuHFanCDNA Nanotechnology-Enabled Drug Delivery SystemsChem Rev201810.1021/acs.chemrev.7b0066329465222Search in Google Scholar

Li J, Green AA, Yan H, Fan C. Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nat Chem 2017; 9:1056-1067.2906448910.1038/nchem.2852LiJGreenAAYanHFanCEngineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputationNat Chem201791056106729064489Search in Google Scholar

Udomprasert A, Kangsamaksin T. DNA origami applications in cancer therapy. Cancer Sci 2017; 108:1535-1543.10.1111/cas.1329028574639UdomprasertAKangsamaksinTDNA origami applications in cancer therapyCancer Sci201710815351543554347528574639Open DOISearch in Google Scholar

Franquelim HG, Khmelinskaia A, Sobczak JP, Dietz H, Schwille P. Membrane sculpting by curved DNA origami scaffolds. Nat Comm 2018; 9:811.10.1038/s41467-018-03198-9FranquelimHGKhmelinskaiaASobczakJPDietzHSchwillePMembrane sculpting by curved DNA origami scaffoldsNat Comm20189811582481029476101Open DOISearch in Google Scholar

Raab M, et al. Using DNA origami nanorulers as traceable distance measurement standards and nanoscopic benchmark structures. Sci Rep 2018; 8:1780.10.1038/s41598-018-19905-x29379061RaabMet alUsing DNA origami nanorulers as traceable distance measurement standards and nanoscopic benchmark structuresSci Rep201881780578909429379061Open DOISearch in Google Scholar

Cronin M, et al. High resolution in vivo bioluminescent imaging for the study of bacterial tumour targeting. PLoS One 2012; 7:e30940.10.1371/journal.pone.0030940CroninMet alHigh resolution in vivo bioluminescent imaging for the study of bacterial tumour targetingPLoS One20127e30940326628122295120Open DOISearch in Google Scholar

Hwang KS, Lee SM, Kim SK, Lee JH, Kim TS. Micro- and nanocantilever devices and systems for biomolecule detection. Annu Rev Anal Chem (Palo Alto Calif ) 2009; 2:77-98.2063605410.1146/annurev-anchem-060908-155232HwangKSLeeSMKimSKLeeJHKimTSMicro- and nanocantilever devices and systems for biomolecule detectionAnnu Rev Anal Chem (Palo Alto Calif )20092779820636054Search in Google Scholar

Shah P, Zhu X, Zhang X, He J, Li CZ. Microelectromechanical System- Based Sensing Arrays for Comparative in Vitro Nanotoxicity Assessment at Single Cell and Small Cell-Population Using Electrochemical Impedance Spectroscopy. ACS Appl Mater Interfaces 2016; 8:5804-12.10.1021/acsami.5b1140926860350ShahPZhuXZhangXHeJLiCZMicroelectromechanical System- Based Sensing Arrays for Comparative in Vitro Nanotoxicity Assessment at Single Cell and Small Cell-Population Using Electrochemical Impedance SpectroscopyACS Appl Mater Interfaces2016858041226860350Open DOISearch in Google Scholar

Cheemalapati SV, et al. Subcellular and in-vivo Nano-Endoscopy. Sci Rep 2016; 6:34400.10.1038/srep3440027694854CheemalapatiSVet alSubcellular and in-vivo Nano-EndoscopySci Rep2016634400504606727694854Open DOISearch in Google Scholar

Alwarappan S, Cissell K, Dixit S, Mohapatra S, Li CZ. Chitosan-Modified Graphene Electrodes for DNA Mutation Analysis. J Electroanal Chem (Lausanne) 2012; 686:69-72.10.1016/j.jelechem.2012.09.02623472058AlwarappanSCissellKDixitSMohapatraSLiCZChitosan-Modified Graphene Electrodes for DNA Mutation AnalysisJ Electroanal Chem (Lausanne)20126866972358705223472058Open DOISearch in Google Scholar

Girard YK, et al. A 3D fibrous scaffold inducing tumoroids: a platform for anticancer drug development. PLoS One 2013; 8:e75345.10.1371/journal.pone.007534524146752GirardYKet alA 3D fibrous scaffold inducing tumoroids: a platform for anticancer drug developmentPLoS One20138e75345379777024146752Open DOISearch in Google Scholar

Terrell-Hall TB, Ammer AG, Griffith JI, Lockman PR. Permeability across a novel microfluidic blood-tumor barrier model. Fluids Barriers CNS 2017; 14:3.10.1186/s12987-017-0050-928114946Terrell-HallTBAmmerAGGriffithJILockmanPRPermeability across a novel microfluidic blood-tumor barrier modelFluids Barriers CNS2017143526000428114946Open DOISearch in Google Scholar

Samavedi S, Joy N. 3D printing for the development of in vitro cancer models. Curr Opin Biomed Eng 2017; 2:35-42.10.1016/j.cobme.2017.06.003SamavediSJoyN3D printing for the development of in vitro cancer modelsCurr Opin Biomed Eng201723542Open DOISearch in Google Scholar

Vafai N, Lowry TW, Wilson KA, Davidson MW, Lenhert S. Evaporative edge lithography of a liposomal drug microarray for cell migration assays. Nanofabrication 2015; 2:34-42.27617264VafaiNLowryTWWilsonKADavidsonMWLenhertSEvaporative edge lithography of a liposomal drug microarray for cell migration assaysNanofabrication20152344210.1515/nanofab-2015-0004501589227617264Search in Google Scholar

Kusi-Appiah AE, Lowry TW, Darrow EM, Wilson KA, Chadwick BP, Davidson MW, Lenhert S. Quantitative dose-response curves from subcellular lipid multilayer microarrays. Lab on a chip 2015; 15:3397-404.2616794910.1039/C5LC00478KKusi-AppiahAELowryTWDarrowEMWilsonKAChadwickBPDavidsonMWLenhertSQuantitative dose-response curves from subcellular lipid multilayer microarraysLab on a chip2015153397404453238226167949Search in Google Scholar

Ghazanfari L, Lenhert S. Screening of Lipid Composition for Scalable Fabrication of Solvent-Free Lipid Microarrays. Front Mater 2016; 3.GhazanfariLLenhertSScreening of Lipid Composition for Scalable Fabrication of Solvent-Free Lipid MicroarraysFront Mater2016310.3389/fmats.2016.00055576173229333429Search in Google Scholar

Lowry TW, Prommapan P, Rainer Q, Van Winkle D, Lenhert S. Lipid Multilayer Grating Arrays Integrated by Nanointaglio for Vapor Sensing by an Optical Nose. Sensors (Basel, Switzerland) 2015; 15:20863-72.10.3390/s15082086326308001LowryTWPrommapanPRainerQVan WinkleDLenhertSLipid Multilayer Grating Arrays Integrated by Nanointaglio for Vapor Sensing by an Optical NoseSensors (Basel, Switzerland)2015152086372457045126308001Open DOISearch in Google Scholar

Bazard P, Frisina RD, Walton JP, Bhethanabotla VR. Nanoparticle- based Plasmonic Transduction for Modulation of Electrically Excitable Cells. Sci Rep 2017; 7:7803.10.1038/s41598-017-08141-428798342BazardPFrisinaRDWaltonJPBhethanabotlaVRNanoparticle- based Plasmonic Transduction for Modulation of Electrically Excitable CellsSci Rep201777803555280428798342Open DOISearch in Google Scholar

eISSN:
2564-615X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, other, Medicine, Biomedical Engineering, Physics, Nanotechnology, Biophysics