Cite

Venteris ER, Wigmosta MS, Coleman AM, Skaggs RL. Strain selection, biomass to biofuel conversion, and resource colocation have strong impacts on the economic performance of algae cultivation sites. Front Energy Res 2014; 2: 37.VenterisERWigmostaMSColemanAMSkaggsRLStrain selection, biomass to biofuel conversion, and resource colocation have strong impacts on the economic performance of algae cultivation sitesFront Energy Res201423710.3389/fenrg.2014.00037Search in Google Scholar

Craggs R, Park J, Sutherland D, Heubeck S. Economic construction and operation of hectare-scale wastewater treatment enhanced pond systems. J Appl Phycol 2015; 27(5): 1913-22.10.1007/s10811-015-0658-6CraggsRParkJSutherlandDHeubeckSEconomic construction and operation of hectare-scale wastewater treatment enhanced pond systemsJ Appl Phycol2015275191322Open DOISearch in Google Scholar

Jonker JGG, Faaij APC. Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production. Appl Energ 2013; 102: 461-75.10.1016/j.apenergy.2012.07.053JonkerJGGFaaijAPCTechno-economic assessment of micro-algae as feedstock for renewable bio-energy productionAppl Energ201310246175Open DOISearch in Google Scholar

Roostaei J, Zhang Y. Spatially explicit Life Cycle Assessment: opportunities and challenges of wastewater-based algal biofuels in the United States. Algal Res 2017; 24(Part B): 395-402.10.1016/j.algal.2016.08.008RoostaeiJZhangYSpatially explicit Life Cycle Assessment: opportunities and challenges of wastewater-based algal biofuels in the United StatesAlgal Res201724Part B395402Open DOISearch in Google Scholar

Garfí M, Flores L, Ferrer I. Life Cycle Assessment of wastewater treatment systems for small communities: Activated sludge, constructed wetlands and high rate algal ponds. J Clean Prod 2017; 161: 211-9.10.1016/j.jclepro.2017.05.116GarfíMFloresLFerrerILife Cycle Assessment of wastewater treatment systems for small communities: Activated sludge, constructed wetlands and high rate algal pondsJ Clean Prod20171612119Open DOISearch in Google Scholar

Harun R, Davidson M, Doyle M, Gopiraj R, Danquah M, Forde G. Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. Biomass and Bioenergy 2011; 35(1): 741-7.10.1016/j.biombioe.2010.10.007HarunRDavidsonMDoyleMGopirajRDanquahMFordeGTechnoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facilityBiomass and Bioenergy20113517417Open DOISearch in Google Scholar

Nagarajan S, Chou SK, Cao S, Wu C, Zhou Z. An updated comprehensive techno-economic analysis of algae biodiesel. Bioresour Technol 2013; 145: 150-6.10.1016/j.biortech.2012.11.108NagarajanSChouSKCaoSWuCZhouZAn updated comprehensive techno-economic analysis of algae biodieselBioresour Technol2013145150623260269Open DOISearch in Google Scholar

Whitton R, Ometto F, Pidou M, Jarvis P, Villa R, Jefferson B. Microalgae for municipal wastewater nutrient remediation: mechanisms, reactors and outlook for tertiary treatment. Environ Technol Rev 2015; 4(1): 133-48.10.1080/21622515.2015.1105308WhittonROmettoFPidouMJarvisPVillaRJeffersonBMicroalgae for municipal wastewater nutrient remediation: mechanisms, reactors and outlook for tertiary treatmentEnviron Technol Rev20154113348Open DOISearch in Google Scholar

Lee J, Lee J, Shukla SK, Park J, Lee TK. Effect of algal inoculation on COD and nitrogen removal, and indigenous bacterial dynamics in municipal wastewater. J Microbiol Biotechnol 2016; 26(5): 900-8.10.4014/jmb.1512.1206726930350LeeJLeeJShuklaSKParkJLeeTKEffect of algal inoculation on COD and nitrogen removal, and indigenous bacterial dynamics in municipal wastewaterJ Microbiol Biotechnol2016265900826930350Open DOISearch in Google Scholar

Hiibel SR, Lemos MS, Kelly BP, Cushman JC. Evaluation of diverse microalgal species as potential biofuel feedstocks grown using municipal wastewater. Front Energy Res 2015; 3: 20.HiibelSRLemosMSKellyBPCushmanJCEvaluation of diverse microalgal species as potential biofuel feedstocks grown using municipal wastewaterFront Energy Res201532010.3389/fenrg.2015.00020Search in Google Scholar

Sutherland DL, Turnbull MH, Craggs RJ. Increased pond depth improves algal productivity and nutrient removal in wastewater treatment high rate algal ponds. Water Res 2014; 53: 271-81.10.1016/j.watres.2014.01.02524530547SutherlandDLTurnbullMHCraggsRJIncreased pond depth improves algal productivity and nutrient removal in wastewater treatment high rate algal pondsWater Res2014532718124530547Open DOISearch in Google Scholar

Munoz R, Guieysse B. Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 2006; 40(15): 2799-815.1688981410.1016/j.watres.2006.06.011MunozRGuieysseBAlgal-bacterial processes for the treatment of hazardous contaminants: a reviewWater Res20064015279981516889814Search in Google Scholar

Khummongkol D, Canterford GS, Fryer C. Accumulation of heavy metals in unicellular algae. Biotechnol Bioeng 1982; 24(12): 2643-60.1854624410.1002/bit.260241204KhummongkolDCanterfordGSFryerCAccumulation of heavy metals in unicellular algaeBiotechnol Bioeng1982241226436018546244Search in Google Scholar

Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MP. Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manage 2016; 181: 817-31.2739784410.1016/j.jenvman.2016.06.059ZeraatkarAKAhmadzadehHTalebiAFMoheimaniNRMcHenryMPPotential use of algae for heavy metal bioremediation, a critical reviewJ Environ Manage20161818173127397844Search in Google Scholar

Kim G-Y, Yun Y-M, Shin H-S, Kim H-S, Han J-I. Scenedesmus-based treatment of nitrogen and phosphorus from effluent of anaerobic digester and bio-oil production. Bioresour Technol 2015; 196: 235-40.10.1016/j.biortech.2015.07.09126247974KimG-YYunY-MShinH-SKimH-SHanJ-IScenedesmus-based treatment of nitrogen and phosphorus from effluent of anaerobic digester and bio-oil productionBioresour Technol20151962354026247974Open DOISearch in Google Scholar

Kandimalla P, Desi S, Vurimindi H. Mixotrophic cultivation of microalgae using industrial flue gases for biodiesel production. Environ Sci Pollut Res Int 2016; 23(10): 9345-54.10.1007/s11356-015-5264-226304814KandimallaPDesiSVurimindiHMixotrophic cultivation of microalgae using industrial flue gases for biodiesel productionEnviron Sci Pollut Res Int2016231093455426304814Open DOISearch in Google Scholar

Huang G, Chen F, Kuang Y, He H, Qin A. Current techniques of growing algae using flue gas from exhaust gas industry: a review. Appl Biochem Biotechnol 2016; 178(6): 1220-38.10.1007/s12010-015-1940-426695777HuangGChenFKuangYHeHQinACurrent techniques of growing algae using flue gas from exhaust gas industry: a reviewAppl Biochem Biotechnol2016178612203826695777Open DOISearch in Google Scholar

Arias DM, Solé-Bundó M, Garfí M, Ferrer I, García J, Uggetti E. Integrating microalgae tertiary treatment into activated sludge systems for energy and nutrients recovery from wastewater. Bioresour Technol 2018; 247: 513-9.10.1016/j.biortech.2017.09.12328972904AriasDMSolé-BundóMGarfíMFerrerIGarcíaJUggettiEIntegrating microalgae tertiary treatment into activated sludge systems for energy and nutrients recovery from wastewaterBioresour Technol2018247513928972904Open DOISearch in Google Scholar

Ge Z, Zhang H, Zhang Y, Yan C, Zhao Y. Purifying synthetic highstrength wastewater by microalgae Chlorella vulgaris under various light emitting diode wavelengths and intensities. J Environ Health Sci Eng 2013 11(1): 8.10.1186/2052-336X-11-8GeZZhangHZhangYYanCZhaoYPurifying synthetic highstrength wastewater by microalgae Chlorella vulgaris under various light emitting diode wavelengths and intensitiesJ Environ Health Sci Eng20131118377629924499586Open DOISearch in Google Scholar

Sforza E, Barbera E, Bertucco A. Improving the photoconversion efficiency: An integrated photovoltaic-photobioreactor system for microalgal cultivation. Algal Res 2015; 10: 202-9.10.1016/j.algal.2015.05.005SforzaEBarberaEBertuccoAImproving the photoconversion efficiency: An integrated photovoltaic-photobioreactor system for microalgal cultivationAlgal Res2015102029Open DOISearch in Google Scholar

Khalid A, Arshad M, Anjum M, Mahmood T, Dawson L. The anaerobic digestion of solid organic waste. Waste Management 2011; 31(8): 1737-44.10.1016/j.wasman.2011.03.021KhalidAArshadMAnjumMMahmoodTDawsonLThe anaerobic digestion of solid organic wasteWaste Management2011318173744Open DOISearch in Google Scholar

Bohutskyi P, Liu K, Nasr LK, Byers N, Rosenberg JN, Oyler GA, Betenbaugh MJ, Bouwer EJ. Bioprospecting of microalgae for integrated biomass production and phytoremediation of unsterilized wastewater and anaerobic digestion centrate. Appl Microbiol Biotechnol 2015; 99(14): 6139-54.2594724110.1007/s00253-015-6603-4BohutskyiPLiuKNasrLKByersNRosenbergJNOylerGABetenbaughMJBouwerEJBioprospecting of microalgae for integrated biomass production and phytoremediation of unsterilized wastewater and anaerobic digestion centrateAppl Microbiol Biotechnol20159914613954Search in Google Scholar

Tett P, Droop MR, Heaney SI. The Redfield ratio and phytoplankton growth rate. Journal of the Marine Biological Association of the United Kingdom. 1985; 65(2): 487-504.10.1017/S0025315400050566TettPDroopMRHeaneySIThe Redfield ratio and phytoplankton growth rateJournal of the Marine Biological Association of the United Kingdom1985652487504Open DOISearch in Google Scholar

Maurer M, Boller M. Modelling of phosphorus precipitation in wastewater treatment plants with enhanced biological phosphorus removal. Water Sci Technol 1999; 39(1): 147-63.10.2166/wst.1999.0033MaurerMBollerMModelling of phosphorus precipitation in wastewater treatment plants with enhanced biological phosphorus removalWater Sci Technol199939114763Open DOISearch in Google Scholar

Ras M, Steyer J-P, Bernard O. Temperature effect on microalgae: a crucial factor for outdoor production. Rev Environ Sci Biotechnol 2013; 12(2): 153-64.10.1007/s11157-013-9310-6RasMSteyerJ-PBernardOTemperature effect on microalgae: a crucial factor for outdoor productionRev Environ Sci Biotechnol201312215364Open DOISearch in Google Scholar

Eustance E, Badvipour S, Wray JT, Sommerfeld MR. Biomass productivity of two Scenedesmus strains cultivated semi-continuously in outdoor raceway ponds and flat-panel photobioreactors. J Appl Phycol 2016; 28(3): 1471-83.10.1007/s10811-015-0710-6EustanceEBadvipourSWrayJTSommerfeldMRBiomass productivity of two Scenedesmus strains cultivated semi-continuously in outdoor raceway ponds and flat-panel photobioreactorsJ Appl Phycol2016283147183Open DOISearch in Google Scholar

Directive 2008/98/EC on waste (Waste Framework Directive) Directive2008/98/EC on waste (Waste Framework Directive)Search in Google Scholar

Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B. Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenerg Res 2008; 1(1): 20-43.10.1007/s12155-008-9008-8SchenkPMThomas-HallSRStephensEMarxUCMussgnugJHPostenCKruseOHankamerBSecond generation biofuels: High-efficiency microalgae for biodiesel productionBioenerg Res2008112043Open DOISearch in Google Scholar

Molina Grima E, Belarbi EH, Acién Fernández FG, Robles Medina A, Chisti Y. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 2003; 20(7): 491-515.10.1016/S0734-9750(02)00050-214550018Molina GrimaEBelarbiEHAcién FernándezFGRobles MedinaAChistiYRecovery of microalgal biomass and metabolites: process options and economicsBiotechnol Adv2003207491515Open DOISearch in Google Scholar

Gerardo ML, Van Den Hende S, Vervaeren H, Coward T, Skill SC. Harvesting of microalgae within a biorefinery approach: A review of the developments and case studies from pilot-plants. Algal Res 2015; 11: 248-62.10.1016/j.algal.2015.06.019GerardoMLVan Den HendeSVervaerenHCowardTSkillSCHarvesting of microalgae within a biorefinery approach: A review of the developments and case studies from pilot-plantsAlgal Res20151124862Open DOISearch in Google Scholar

Davis R, Markham J, Kinchin C, Grundl N, Tan EC, Humbird D. Process design and economics for the production of algal biomass: algal biomass production in open pond systems and processing through dewatering for downstream conversion. NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States)), 2016. DavisRMarkhamJKinchinCGrundlNTanECHumbirdDProcess design and economics for the production of algal biomass: algal biomass production in open pond systems and processing through dewatering for downstream conversionNREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States))201610.2172/1239893Search in Google Scholar

Bilad MR, Vandamme D, Foubert I, Muylaert K, Vankelecom IFJ. Harvesting microalgal biomass using submerged microfiltration membranes. Bioresour Technol 2012; 111: 343-52.2239158610.1016/j.biortech.2012.02.009BiladMRVandammeDFoubertIMuylaertKVankelecomIFJHarvesting microalgal biomass using submerged microfiltration membranesBioresour Technol20121113435222391586Search in Google Scholar

Shelef G, Sukenik A, Green M. Microalgae harvesting and processing: a literature review. Technion Research and Development Foundation Ltd., Haifa (Israel), 1984.ShelefGSukenikAGreenMMicroalgae harvesting and processing: a literature reviewTechnion Research and Development Foundation Ltd.Haifa (Israel)198410.2172/6204677Search in Google Scholar

Wooley RJ, Putsche V. Development of an ASPEN PLUS physical property database for biofuels components. 1996. WooleyRJPutscheVDevelopment of an ASPEN PLUS physical property database for biofuels components199610.2172/257362Search in Google Scholar

Blackman FF. Optima and limiting factors. Ann Bot - London 1905; 19(74): 281-95.BlackmanFFOptima and limiting factorsAnn Bot-London190519742819510.1093/oxfordjournals.aob.a089000Search in Google Scholar

Beer A. Bestimmung der absorption des rothen lichts in farbigen flussigkeiten. Ann Physik 1852; 162: 78-88. 10.1002/andp.18521620505BeerABestimmung der absorption des rothen lichts in farbigen flussigkeitenAnn Physik18521627888Open DOISearch in Google Scholar

Chu HQ, Tan XB, Zhang YL, Yang LB, Zhao FC, Guo J. Continuous cultivation of Chlorella pyrenoidosa using anaerobic digested starch processing wastewater in the outdoors. Bioresour Technol 2015; 185: 40-8.10.1016/j.biortech.2015.02.03025746477ChuHQTanXBZhangYLYangLBZhaoFCGuoJContinuous cultivation of Chlorella pyrenoidosa using anaerobic digested starch processing wastewater in the outdoorsBioresour Technol201518540825746477Open DOISearch in Google Scholar

ISO 14044:2006 Environmental Management, Life Cycle Assessment, Requirements and Guidelines. International Organization for Standardization 2006.ISO 14044:2006 Environmental Management, Life Cycle Assessment, Requirements and Guidelines. International Organization for Standardization2006Search in Google Scholar

Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, Van Zelm R. RecCiPE 2008: A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Den Haag 2009.GoedkoopMHeijungsRHuijbregtsMDe SchryverAStruijsJVan ZelmRRecCiPE 2008 A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level Den Haag2009Search in Google Scholar

Amuda OS, Amoo IA. Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment. J Hazard Mater 2007; 141(3): 778-83.1695940410.1016/j.jhazmat.2006.07.044AmudaOSAmooIACoagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatmentJ Hazard Mater200714137788316959404Search in Google Scholar

Richardson JW, Johnson MD, Zhang X, Zemke P, Chen W, Hu Q. A financial assessment of two alternative cultivation systems and their contributions to algae biofuel economic viability. Algal Res 2014; 4: 96-104.10.1016/j.algal.2013.12.003RichardsonJWJohnsonMDZhangXZemkePChenWHuQA financial assessment of two alternative cultivation systems and their contributions to algae biofuel economic viabilityAlgal Res2014496104Open DOISearch in Google Scholar

Hu J, Nagarajan D, Zhang Q, Chang J-S, Lee D-J. Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnol Adv 2017; S0734-9750(17)30120-9. (ahead of publication, corrected proof online)28947090HuJNagarajanDZhangQChangJ-SLeeD-JHeterotrophic cultivation of microalgae for pigment production: A reviewBiotechnol Adv2017S0734-9750(17)30120-9. (ahead of publication, corrected proof online)10.1016/j.biotechadv.2017.09.00928947090Search in Google Scholar

Zheng Y, Chi Z, Lucker B, Chen S. Two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production. Bioresour Technol 2012; 103(1): 484-8.10.1016/j.biortech.2011.09.12222023968ZhengYChiZLuckerBChenSTwo-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid productionBioresour Technol20121031484822023968Open DOISearch in Google Scholar

Larsdotter K, La Cour Jansen J, Dalhammar G. Biologically mediated phosphorus precipitation in wastewater treatment with microalgae. Environ Technol 2007; 28(9): 953-60.1791024810.1080/09593332808618855LarsdotterKLa Cour JansenJDalhammarGBiologically mediated phosphorus precipitation in wastewater treatment with microalgaeEnviron Technol20072899536017910248Search in Google Scholar

García J, Mujeriego R, Hernández-Mariné M. High rate algal pond operating strategies for urban wastewater nitrogen removal. J Appl Phycol 2000; 12(3/5): 331-9.10.1023/A:1008146421368GarcíaJMujeriegoRHernández-MarinéMHigh rate algal pond operating strategies for urban wastewater nitrogen removalJ Appl Phycol2000123/53319Open DOISearch in Google Scholar

eISSN:
2564-615X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, other, Medicine, Biomedical Engineering, Physics, Nanotechnology, Biophysics