Open Access

The Impact of Waste Generated from Thermal Transformation of Municipal Wate on Selected Properties of Cement Mortar

   | Dec 29, 2023

Cite

Aggarwal, Y., Siddique, R., 2014. Microstructure and properties of concrete using bottom ash and waste foundry sand as partial replacement of fine aggregates, Construction and Building Materials, 54, 210-223. Search in Google Scholar

Czajkowska, A., Raczkiewicz, W., Ingaldi, M. 2023. Determination of the linear correlation coefficient between Young’s modulus and the compressive strength in fibre-reinforced concrete based on experimental studies, Production Engineering Archives, 29(3), 288-297, DOI: 10.30657/pea.2023.29.33 Search in Google Scholar

Cardoso, W., di Felice, R., Baptista, R.C., Machado, T.A.P., de Sousa Galdino, A.G., 2022. Evaluation of the use of blast furnace slag as an additive in mortars, REM, Int. Eng. J., Ouro Preto, 75(3), 215-224 Search in Google Scholar

Dębska B., Krasoń J., Lichołai L., 2020. The evaluation of the possible utilization of waste glass in sustainable mortars, Construction of Optimized Energy Potential, vol. 9 (2), 7-15, DOI: 10.17512/bozpe.2020.2.01 Search in Google Scholar

Francois, D., Criado, C., 2007. Monitoring of leachate at a test road using treated fly ash from municipal solid waste incinerator, Journal of Hazardous Materials, 2007, 543-549 Search in Google Scholar

Gu, L., Ozbakkaloglu, T., 2016. Use of recycled plastics in concrete: A critical review, Waste Management., 51, 19–42 Search in Google Scholar

Halicka, A., Ogrodnik, P., Zegardlo, B., 2013. Using ceramic sanitary ware waste as concrete aggregate, Construction and Building Materials, 48, 295–305 Search in Google Scholar

Helbrych, P., 2019. Recycling of sulfur polymers derived from the purification process of copper and other non-ferrous metals in concrete composites, Construction of Optimized Energy Potential, 8(1), 131-136 DOI: 10.17512/bozpe.2019.1.14 Search in Google Scholar

Jura, J., 2020. Influence of Type of Biomass Burned on the Properties of Cement Mortar Containing Fly Ash, Construction of Optimized Energy Potential, 9(1), 77-82 Search in Google Scholar

Jura, J., Ulewicz, M., 2021. Assessment of the Possibility of Using Fly Ash from Biomass Combustion for Concrete, Materials, 14, 6708, DOI: 10.3390/ma14216708 Search in Google Scholar

Jura, J., 2023. Influence of Waste Ashes from Biomass Combustion on Frost Resistance of Cement Mortars, Scientific Journals of the Maritime University of Szczecin, 75(147), 35-41 Search in Google Scholar

Kalak, T., Szypura, P., Cierpiszewski, R., Ulewicz, M., 2023. Modification of Concrete Composition Doped by Sewage Sludge Fly Ash and Its Effect on Compressive Strength, Materials, 16, 4043, DOI: 10.3390/ma16114043 Search in Google Scholar

Kalinowska-Wichrowska, K., Pawluczuk, E., Bołtryk, M., Jimenez, J.R., Fernandez-Rodriguez, J.M., Suescum Morales, D., 2022. The Performance of Concrete Made with Secondary Products—Recycled Coarse Aggregates, Recycled Cement Mortar, and Fly Ash–Slag Mix. Materials, 15, 1438. Search in Google Scholar

Martinez-Molina, W., Chavez-Garcia, H.L., Perez-Lopez, T., Alonso-Guzman, E.M., Arreola-Sanchez, M., Navarrete-Seras, M.A., Borrego-Perez, J.A., Sanchez-Calvillo, A., Guzman-Torres, J.A., Perez-Quiroz, J.T., 2021. Effect of the Addition of Agribusiness and Industrial Wastes as a Partial Substitution of Portland Cement for the Carbonation of Mortars. Materials, 14, 7276 Search in Google Scholar

Muradyan, N.G., Arzumanyan, A.A., Kalantaryan, M.A., Vardanyan, Y.V., Yeranosyan, M., Ulewicz, M., Laroze, D., Barseghyan, M.G., 2023. The Use of Biosilica to Increase the Compressive Strength of Cement Mortar: The Effect of the Mixing Method. Materials 2023, 16, 5516, DOI: 10.3390/ma16165516 Search in Google Scholar

Pietrzak, A., 2019. The effect of ashes generated from the combustion of sewage sludge on the basic mechanical properties of concrete, Construction of Optimized Energy Potential, 8(1), 29–35, DOI: 10.17512/bozpe.2019.1.03 Search in Google Scholar

Popławski, J., Lelusz, M., 2023. Assessment of Sieving as a Mean to Increase Utilization Rate of Biomass Fly Ash in Cement-Based Composites. Applied Sciences, 13, 1659. Search in Google Scholar

Popławski, J., 2020. Influence of biomass fly-ash blended with bituminous coal fly-ash on properties of concrete, Construction of Optimized Energy Potential, 9(1), 89-96, DOI: 10.17512/bozpe.2020.1.11 Search in Google Scholar

Pribulov’a. A., Futas. P., Baricova, D., 2016. Processing and utilization of metallurgical slags, Production Engineering Archives, 11/2, 2–5 Search in Google Scholar

PN-EN 197-1 Cement – część 1. Skład, wymagania i kryteria zgodności dotyczące cementów powszechnego użytku Search in Google Scholar

PN-EN 1015-3 Metody badań zapraw do murów Search in Google Scholar

PN-EN 196-1:2016-7 Metody badania cementu - Część 1: Oznaczanie wytrzymałości Search in Google Scholar

Rashad, A.M., 2016. A comprehensive overview about recycling rubber as fine aggregate replacement in traditional cementitious materials, International Journal of Sustainable Built Environment, 5, 46–82. Search in Google Scholar

Sharma, R., Bansal, P.P., 2016. Use of different forms of waste plastic in concrete—A review, Journal of Cleaner Production, 112, 473–482 Search in Google Scholar

Šadzevičius R., Gurskis V., Ramukevičius D., 2023. Research on the properties of concrete with hemp shives, Construction of Optimized Energy Potential (CoOEP), 12, 25-32, DOI: 10.17512/bozpe.2023.12.03 Search in Google Scholar

Tavakoli, D., Hashempour, M., Heidari, A., 2018. Use of Waste Materials in Concrete: A review, Pertanika Journal of Science & Technology, 26, 499–522 Search in Google Scholar

Ulewicz, M., Jura J., 2017. Effect of fly and bottom ash mixture from combustion of biomass on strength of cement mortar, E3S Web of Conferences 18, DOI: 10.1051/e3sconf/20171801029. Search in Google Scholar

Ulewicz, M.; Halbiniak, J. Application of waste from utilitarian ceramics for production of cement mortar and concrete. Physicochem. Probl. Miner. Process. 2016, 52, 1002–1010. Search in Google Scholar

Ulewicz, M., Pietrzak, A., 2021. Properties and Structure of Concretes Doped with Production Waste of Thermoplastic Elastomers from the Production of Car Floor Mats, Materials, 14, 872 Search in Google Scholar

Ulewicz, M., Pietrzak, A., 2023. Influence of Post-Consumer Waste Thermoplastic Elastomers Obtained from Used Car Floor Mats on Concrete Properties, Materials, 16, 2231 Search in Google Scholar

Walczak, P., Małolepszy, J., Reben, M., Rzepa, K., 2015. Mechanical properties of concrete mortar based on mixture of CRT glass cullet and fluidized fly ash, Procedia Engineering, 108, 453 – 458 Search in Google Scholar

Wielgosiński G., Wasiak D., 2015. Wtórne odpady z procesu spalania odpadów, Nowa Energia, 45-56. Search in Google Scholar

Wielgosiński G., 2016. Termiczne przekształcanie odpadów komunalnych - wybrane zagadnienia, Wydawnictwo „Nowa Energia”, Racibórz Search in Google Scholar

https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/ochronasrodowiska-w-2022-roku,12,6.html Search in Google Scholar