Cite

1. McAdam, K., A. Eldridge, M. Fearon, C. Liu, A. Manson, J. Murphy, and A. Porter: Influence of Cigarette Circumference on Smoke Chemistry, Biological Activity, and Smoking Behaviour; Regul. Toxicol. Pharmacol. 82 (2016) 111–126. DOI: 10.1016/j.yrtph.2016.09.01010.1016/j.yrtph.2016.09.010Open DOISearch in Google Scholar

2. Lugton, W.G.D.: Cigarette Parameters: The Effect of Altering the Circumference; BAT Report No RD.834-R. Available at: http://industrydocuments.library.ucsf.edu/tobacco/docs/hnby0193 (accessed February 2019).Search in Google Scholar

3. Perfetti, P.F., D.E. Townsend, and J.N. Taylor: The Effect of Circumference on Cigarette Burn Rates and Deliveries; RJRT Report R&DM No 75. Project No 7608, 1983. Available at: http://industrydocuments.library.ucsf.edu/tobacco/docs/qjhg0082 (accessed February 2019).Search in Google Scholar

4. Schneider, W. and A. Schlüter: A Semi-Empirical Model for Simulating the Effect of Design Components on Smoke Deliveries; BAT Forschung Entwicklung und Produktion, 1987. Available at: https://industrydocuments.library.ucsf.edu/tobacco/docs/#id=msfl0138 (accessed February 2019).Search in Google Scholar

5. Norman, A.: Cigarette Design and Materials; Chapter 11B in: Tobacco: Production, Chemistry and Technology, edited by D.L. Davis and M.T. Nielsen, Blackwell Science, Oxford, UK, 1999, 353–387.Search in Google Scholar

6. Irwin, W.D.E.: The Effect of Circumference on Mainstream Deliveries and Composition: Progress Report 2; BAT Report No RD. 2135, BAT UK, February 22, 1989. Available at: https://www.industrydocuments.library.ucsf.edu/tobacco/docs/#id=lnvv0205 (accessed February 2019).Search in Google Scholar

7. Liu, C., Y. DeGrandpré, A. Porter, A. Griffiths, K.G. McAdam, R. Voisine, F. Côté, and C.J. Proctor: The Use of a Novel Tobacco Treatment Process to Reduce Toxicant Yields in Cigarette Smoke; Food Chem. Toxicol. 49 (2011) 1904–1917. DOI: 10.1016/j.fct.2011.02.01510.1016/j.fct.2011.02.015Open DOISearch in Google Scholar

8. McAdam, K.G., E.O. Gregg, C. Liu, D.J. Dittrich, M.G. Duke, and C.J. Proctor: The Use of a Novel Tobacco-Substitute Sheet and Smoke Dilution to Reduce Toxi-cant Yields in Cigarette Smoke; Food Chem. Toxicol. 49 (2011) 1684–1696. DOI: 10.1016/j.fct.2011.04.00210.1016/j.fct.2011.04.002Search in Google Scholar

9. McAdam, K.G., E.O. Gregg, M. Bevan, D.J. Dittrich, S. Hemsley, C. Liu, and C.J. Proctor: Design and Chemical Evaluation of Reduced Machine-Yield Cigarettes; Regul. Toxicol. Pharmacol. 62 (2012) 138–150. DOI: 10.1016/j.yrtph.2011.11.00710.1016/j.yrtph.2011.11.007Open DOISearch in Google Scholar

10. Dittrich, D.J., R.T. Fiebelkorn, M.J. Bevan, D. Rush-forth, J.J. Murphy, M. Ashley, K.G. McAdam, C. Liu, and C.J. Proctor: Approaches for the Design of Reduced Toxicant Emission Cigarettes; SpringerPlus 3 (2014) 374. DOI: 10.1186/2193-1801-3-37410.1186/2193-1801-3-374Search in Google Scholar

11. Baker, R.R.: Product Formation Mechanisms Inside a Burning Cigarette; Prog. Energy Combust. Sci. 7 (1981) 135–153. DOI: 10.1016/0360-1285(81)90008-310.1016/0360-1285(81)90008-3Open DOISearch in Google Scholar

12. DeBardeleben, M.A., W.E. Claflin, and W.F. Gannon: Role of Cigarette Physical Characteristics on Smoke Composition; Rec. Adv. Tob. Sci. 4 (1978) 85–111.Search in Google Scholar

13. Yamamoto, T., U. Anzai, and T. Okada: Effect of Cigarette Circumference on Weight Loss During Puffs and Total Delivery of Tar and Nicotine; Beitr. Tabakforsch. Int. 12 (1984) 259–269. DOI: 10.2478/cttr-2013-054710.2478/cttr-2013-0547Open DOISearch in Google Scholar

14. Yamamoto, T., Y. Suga, C. Tokura, T. Toda, and T. Okada: Effect of Cigarette Circumference on Formation Rates of Various Components in Mainstream Smoke; Beitr. Tabakforsch. Int. 13 (1985) 81–87. DOI: 10.2478/cttr-2013-055910.2478/cttr-2013-0559Open DOISearch in Google Scholar

15. Siu, M., N. Mladjenovic, and E. Soo: The Analysis of Mainstream Smoke Emissions of Canadian ‘Super Slim’ Cigarettes; Tob. Control. 22 (2013) e10. DOI: 10.1136/tobaccocontrol-2012-05045010.1136/tobaccocontrol-2012-05045022821751Search in Google Scholar

16. Laszlo, T.S. and F.M. Watson III: A Scanning Infrared Technique for Cigarette Coal Peak Temperature Measurements; Beitr. Tabakforsch. 7 (1974) 269–275. DOI: 10.2478/cttr-2013-034110.2478/cttr-2013-0341Open DOISearch in Google Scholar

17. Baker, R.R.: Temperature Distribution Inside a Burning Cigarette; Nature 247 (1974) 405–406. DOI: 10.1038/247405a010.1038/247405a0Open DOISearch in Google Scholar

18. Baker, R.R.: Temperature Variation Within a Cigarette Combustion Coal During the Smoking Cycle; High Temp. Sci. 7 (1975) 236–247.Search in Google Scholar

19. Muramatsu, M.: Studies on the Transport Phenomena in Naturally Smoldering Cigarettes; Kenkyu Hokoku, Scientific Papers of the Central Research Institute, Japan Tobacco & Salt Public Corporation, 1981.Search in Google Scholar

20. Li, B., H.R. Pang, L.C. Zhao, B. Wang, C. Liu, K.G. McAdam, and D.S. Luo: Quantifying Gas-Phase Temperature Inside a Burning Cigarette; Ind. Eng. Chem. Res. 53 (2014) 7810–7820. DOI: 10.1021/ie500982210.1021/ie5009822Open DOISearch in Google Scholar

21. Li, B., L.C. Zhao, C.F. Yu, C. Liu, Y. Jing, H.R. Pang, B. Wang, and K.G. McAdam: Effect of Machine Smoking Intensity and Filter Ventilation Level on Gas-Phase Temperature Distribution Inside a Burning Cigarette; Beitr. Tabakforsch. Int. 26 (2014) 191–203. DOI: 10.1515/cttr-2015-000710.1515/cttr-2015-0007Open DOISearch in Google Scholar

22. Li, B., L.C. Zhao, L. Wang, C. Liu, K.G. McAdam, and B. Wang: Gas-Phase Pressure and Flow Velocity Fields Inside a Burning Cigarette During a Puff; Thermochim. Acta 623 (2016) 22–28. DOI: 10.1016/j.tca.2015.11.00610.1016/j.tca.2015.11.006Open DOISearch in Google Scholar

23. Cui, X.M., C.F. Yu, H.J. Li, L. Wang, L.C. Zhao, and B. Li: Characterization of Instantaneous Burning Rate and Analysis of Regional Characters in Burning Cone Based on Cigarette Temperature Measurement Technology; Tob. Sci. Technol. 50 (2017) 73–79. DOI: 10.16135/j.issn1002-0861.2016.0362Search in Google Scholar

24. Cui, X.M.: The Influence of Tobacco Structure on the Combustion State of Cigarette; Thesis, Available at: http://g.wanfangdata.com.cn/details/detail.do?_type=degree&id=D01199943# (accessed February 2019).Search in Google Scholar

25. Resnik, F.E., W.G. Houck, W.A. Geiszler, and J.E. Wickham: Factors Affecting Static Burning Rate; Tob. Sci. XXI (1977) 103–107. Available at: https://www.coresta.org/sites/default/files/abstracts/Tobacco_Science_1977_XXI_p._103-7_ISSN.0082-4623.pdf (accessed August 2019)Search in Google Scholar

26. Baker, R.R.: A Review of Methods of Altering the Burning Characteristics of Cigarettes; BAT Report No. RD 1012-R, June 4, 1973. Available at: http://industrydocuments.library.ucsf.edu/tobacco/docs/npdp0205 (accessed August 2019)Search in Google Scholar

27. Irwin, W.D.E.: The Effect of Circumference on Mainstream Deliveries and Composition; Progress Report. BAT Report No RD. 2112, March, 30, 1988. Available at: http://industrydocuments.library.ucsf.edu/tobacco/docs/qhng0207 (accessed February 2019).Search in Google Scholar

28. Rodgman, A. and T.A. Perfetti: The Chemical Components of Tobacco and Tobacco Smoke; CRC Press, Boca Raton, FL, USA, 2013.Search in Google Scholar

29. Zhou, S.Y.: Effects of Redrying and Drying Process on Pyrolysis and Combustion Characteristics of Tobacco Biomass; Thesis, Shanghai, East China University of Science and Technology, 2015. Available at: http://g.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2970618 (accessed August 2019)Search in Google Scholar

30. International Organisation for Standardization (ISO): ISO 4387:2000 – Cigarettes – Determination of Total and Nicotine-Free Dry Particulate Matter Using a Rroutine Analytical Smoking Machine; ISO, Geneva, Switzerland, 2000.Search in Google Scholar

31. International Organisation for Standardization (ISO): ISO 10315:2000 – Cigarettes – Determination of Nicotine in Smoke Condensates – Gas-Chromatographic Method; ISO Geneva, Switzerland, 2000.Search in Google Scholar

32. International Organisation for Standardization (ISO): ISO 10362-2:2013 – Cigarettes – Determination of Water in Smoke Condensates – Part 2: Karl Fischer Method; ISO Geneva, Switzerland, 2013.Search in Google Scholar

33. International Organisation for Standardization (ISO): ISO ISO 8454:1995 – Cigarettes – Determination of Carbon Monoxide in the Vapour Phase of Cigarette Smoke – NDIR method; ISO Geneva, Switzerland, 1995.Search in Google Scholar

34. International Organisation for Standardization (ISO): ISO 3308:2012 – Routine Analytical Cigarette-Smoking Machine – Definitions and Standard Conditions, ISO, Geneva, Switzerland, 2012.Search in Google Scholar

eISSN:
1612-9237
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
General Interest, Life Sciences, other, Physics