Open Access

Mathematical Modeling of a Lit-End Cigarette: Puffing Cycle and Effects of Puff Counts


Cite

1. Egerton, A., K. Gugan, and F.J. Weinberg: The mecha-nism of smoldering in cigarettes; Combust. Flame 7 (1963) 63–78.10.1016/0010-2180(63)90156-1Search in Google Scholar

2. Ohlemiller, T. J.: Modeling of smoldering combustion propagation; Prog. Energy Combustion Sci. 11 (1985) 277–310.10.1016/0360-1285(85)90004-8Search in Google Scholar

3. Summerfield, A.M., T.J. Ohlemiller, and H.W. San-dusky: A thermo-physical mathematical model of steady-draw smoking and predictions of overall ciga-rette behavior; Combust. Flame 33 (1973) 263–279.Search in Google Scholar

4. Norbury, J., and M.A. Stuart: A model for porous-medium combustion; Q. J. Mechanics Appl. Math. 42 (1989) 159–178.10.1093/qjmam/42.1.159Search in Google Scholar

5. Kansa, E.J., H.E. Perlee, and R.F. Chaiken: Mathe-matical model of wood pyrolysis including internal forced convection; Combust. Flame 29 (1977) 311–324.Search in Google Scholar

6. Leach, S.V., G. Rein, J.L. Ellzey, O.A. Ezekoye, and J.L. Torero: Kinetic and fuel property effects on for-ward smoldering; Combust. Flame 120 (2000) 346–358.Search in Google Scholar

7. Muramatsu, M., S. Umemura, and T. Okada: A mathe-matical model of evaporation-pyrolysis processes in-side a naturally smoldering cigarette; Combust Flame 36 (1979) 245–262.Search in Google Scholar

8. Sandusky, H.W.: A computer-simulated cigarette model for use in the development of less hazardous cigarette; Ph.D. Thesis, 1976, Princeton University, Princeton, NJ.Search in Google Scholar

9. Di Blasi, D.C.: Modeling and simulation of combustion processes of charring and non-charring solid fuels; Prog. Energy Combust. Sci. 19 (1993) 71–104.Search in Google Scholar

10. Yi, S., E. Song and M.R. Hajaligol: Mathematical model of smoldering combustion in a carbonaceous porous medium, Part 1- Development of pyrolysis and combustion models for a cylindrical geometry; J. Fire Sciences 19 (2001) 429–448.Search in Google Scholar

11. Rostami, A., J. Murthy, and M.R. Hajaligol: Modeling of a smoldering cigarette; J. Anal. Appl. Pyrolysis 66 (2003) 281–301.10.1016/S0165-2370(02)00117-1Search in Google Scholar

12. Rostami, A., J. Murthy, and M.R. Hajaligol: Modeling of the smoldering process in a porous biomass fuel rod; Fuel 83 (2004) 1527–1536.Search in Google Scholar

13. Saidi, M.S., M.R. Hajaligol, and F. Rasouli: An experi-mental and numerical analysis of puff hydrodynamics; Beitr. Tabakfosch. Int. 21 (2004) 157–166.Search in Google Scholar

14. Saidi, M.S., M.R. Hajaligol, and F. Rasouli: Numerical simulation of a burning cigarette during puffing; J. Anal. Appl. Pyrolysis 72 (2004) 141–152.Search in Google Scholar

15. Baker, R.R.: The kinetics of tobacco pyrolysis, Ther-mochim. Acta 17 (1976) 29–63.10.1016/0040-6031(76)80043-3Search in Google Scholar

16. M.A. Wojtowicz, R. Bassilakis, W.W. Smith, Y. Chen and R.M. Carangelo: Modeling the evolution of volatile species during tobacco pyrolysis, J. Anal. Appl. Pyro-lysis 66 (2003) 235–261.Search in Google Scholar

17. Suuberg, E.M.: Approximate solution technique for non-isothermal, Gaussian distributed activation energy models; Combust. Flame 50 (1983) 243–245.Search in Google Scholar

18. Du, Z., A.F. Sarofim, J.P. Longwell, and L. Tognotti: The CO/CO2 ratio in the products of the carbon-oxygen reaction, Fundamental issues in control of carbon gasi-fication reactivity; Kluwer Academic Publishers, Netherlands 1991, pp. 91–196.10.1007/978-94-011-3310-4_5Search in Google Scholar

19. Muramatsu, M., S. Umemura, and T. Okada: Con-sumption of oxygen and heat evolved during natural smolder of a cigarette; J. Chem. Soc. Japan, Chem. and Ind. Chem. (1978) 1441–1448.Search in Google Scholar

20. Ergun, S.: Fluid flow transport through packed column; Chem. Eng. Prog. 48 (1952) 89–94.Search in Google Scholar

21. Dullien, F.A.L.: Porous media: fluid transport and pore structure; second edition, Academic Press, 1992.10.1016/B978-0-12-223651-8.50007-9Search in Google Scholar

22. Perry, R.H. and D.W. Green: Perry's Chemical Engineers’ Hand Book; seventh edition, McGraw Hill, N.Y., 1997.Search in Google Scholar

23. Fatehi, M. and M. Kaviany: Role of gas-phase reaction and gas-solid thermal nonequilibrium in reverse combustion; Int. J. Heat mass Transfer 40 (1997) 2607–2620.Search in Google Scholar

24. Tsotsas, E. and E. Martin: Thermal conductivity of packed beds, A review; Chem. Eng. Process 22 (1987) 19–37.Search in Google Scholar

25. Kaviany, M.: Principles of Heat Transfer in Porous Media; second edition, Springer Publishers, New York, 1995.10.1007/978-1-4612-4254-3Search in Google Scholar

26. Gunn, D.J.: Axial and radial dispersion in fixed beds; Chem. Eng. Sci. 42 (1987) 363–373.Search in Google Scholar

27. Vortmeyer, D.: Axial heat dispersion in packed beds; Chem. Eng. Sci. 30 (1975) 999–1001.Search in Google Scholar

28. Koch, D.L., and J.F. Brady: Dispersion in fixed beds; J. Fluid Mech. 154 (1985) 399–427.10.1017/S0022112085001598Search in Google Scholar

29. Edwards, M.F., and J.E. Richardson: Gas dispersion in packed beds; Chem. Eng. Sci. 23 (1968) 109–123.Search in Google Scholar

30. Wakao, N., and T. Funazkri: Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coeffi-cients in packed beds; Chem. Eng. Sci. 33 (1978) 1375–1384.Search in Google Scholar

31. Martin, H.: Low Peclet number particle-to-fluid heat and mass transfer in packed beds; Chem. Eng. Sci. 33 (1978) 913–919.Search in Google Scholar

32. Grober, H. and S. Erk: Fundamentals of Heat Transfer; Mc Graw Hill, New York, 1961.Search in Google Scholar

33. Singh, B.P., and M. Kaviani: Effect of solid con-ductivity on radiative heat transfer in packed beds; Int. J. Heat Mass Transfer 16 (1994) 2579–2583.Search in Google Scholar

34. Fatehi, M. and M. Kaviany: Role of gas-phase reaction and gas-solid thermal nonequilibrium in reverse com-bustion; Int. J. Heat mass Transfer 40 (1997) 2607–2620.Search in Google Scholar

35. Fuller, E.N., P.D. Schettler, and J.C. Giddings: A new method for prediction of binary gas-phase diffusion coefficient; Industrial and Engineering Chemistry 58 (1966) 19–27.Search in Google Scholar

36. R.H. Perry and D.W. Green: Perry's Chemical Engineers’ Hand Book; seventh edition, McGraw Hill, N.Y., 1997.Search in Google Scholar

37. Peters, B. and C. Bruch: Drying and pyrolysis of wood particles: experiments and simulation; J. Anal. Appl. Pyrolysis 70 (2003) 233–250.Search in Google Scholar

38. Doormal, V. and G.D. Raithby: Enhancements of the SIMPLE method for predicting incompressible fluid flow; Numer. Heat Transfer 7 (1984) 147–163.Search in Google Scholar

39. Ferziger, J.H. and M. Peric: Computational Methods for Fluid Dynamics, second edition, Springer-Verlag, Berlin, 1999, pp. 74-75.Search in Google Scholar

40. FLUENT 6.0; UDF Manual, Fluent Inc, New Hampshire, 2001.Search in Google Scholar

41. Baker, R.R.: Temperature variation within a cigarette combustion coal during the smoldering cycle; High Temp. Sci. 7 (1975) 236–247.Search in Google Scholar

42. Muramatsu, M., S. Umemura, and T. Okada: Con-sumption of oxygen and heat evolved during natural smolder of a cigarette; J. Chem., Soc. Japan, Chem. Ind. Chem. (1978) 1441–1448.Search in Google Scholar

43. Baker, R.R. and D.F. Robinson: Semi-theoretical model for prediction of smoke deliveries; in: Papers Presented at the Joint Meeting of the Smoke and Technology Groups, Harare, Zimbabwe, October 1994, CORESTA Congress, Paris, 1994, pp. 63.Search in Google Scholar

44. Norman, A.: Cigarette design and materials; in: Tobacco Production, Chemistry and Technology, edited by D.L. Davis and M.T. Nielsen, Blackwell Science Ltd., MA, 2002, Chapter 11B, pp. 353–387.Search in Google Scholar

45. Saidi, M.S., F. Rasouli, and M.R. Hajaligol: Heat transfer coefficient for a packed bed of shredded materials at low peclet numbers; Heat Transfer Engineering 27 (2006) 41–49.Search in Google Scholar

eISSN:
1612-9237
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
General Interest, Life Sciences, other, Physics