Open Access

Episodic but ample sporophyte production in the moss Drepanocladus turgescens (Bryophyta: Amblystegiaceae) in SE Sweden


Cite

Abramova A.L.A., Savicz-Ljubitskaja L.I. & Smirnova Z.N. (1961): Opredelitel listostebelnich mchov arktiki SSSR. Moskva: Izdatelstvo Akademii Nauk SSSR, 714 pp.Search in Google Scholar

Arnell H.W. (1875): De Skandinaviska löfmossornas kalendarium (PhD thesis). Upsala: Esaias Edquists boktryckeri, 129 pp.10.5962/bhl.title.63760Search in Google Scholar

Bergamini A., Ungricht S. & Hofmann H. (2009): An elevational shift of cryophilous bryophytes in the last century - an effect of climate warming? – Diversity and Distributions 15: 871-879.10.1111/j.1472-4642.2009.00595.xSearch in Google Scholar

Birks H.J.B. & Dransfield J. (1970): A note on the habitat of Scorpidium turgescens (T. Jens.) Loeske in Scotland. – Transactions of the British Bryological Society 6: 129-132.10.1179/006813870804146590Search in Google Scholar

Bisang I., Ehrlén J., Persson C. & Hedenäs L. (2014): Family affiliation, sex ratio and sporophyte frequency in unisexual mosses. – Botanical Journal of the Linnean Society 174: 163-172.10.1111/boj.12135Search in Google Scholar

Blackstock T.H. (2018): Apparent increase in fertility of Lunularia cruciata (L.) Lind. (Marchantiophyta) in Britain associated with climate change. – Journal of Bryology 40: 377-383.10.1080/03736687.2018.1514175Search in Google Scholar

Chopra R.N. & Bhatla S.C. (1983): Regulation of gametangial formation in bryophytes. – Botanical Review 49: 29-63.10.1007/BF02861008Search in Google Scholar

Clobert J., Baguette M., Benton T.G. & Bullock J.M. (2012): Dispersal ecology and evolution. Oxford: Oxford University Press, XXXIII + 462 pp.10.1093/acprof:oso/9780199608898.001.0001Search in Google Scholar

Corlett R.T. & Westcott D.A. (2013): Will plant movement keep up with climate change? – Trends in Ecology and Evolution 28: 482-488.10.1016/j.tree.2013.04.00323721732Search in Google Scholar

During H.J. (1979): Life strategies of bryophytes, a preliminary review. – Lindbergia 5: 2-18.Search in Google Scholar

During H.J. (1992): Ecological classification of bryophytes and lichens. In: Bates J.W. & Far mer A.M. (ed.), Bryophytes and lichens in a changing environment: 1-31. Oxford: Clarendon Press.Search in Google Scholar

During H.J. (2007): Relations between clonal growth, reproduction and breeding system in the bryophytes of Belgium and The Netherlands. – Nova Hedwigia, Beiheft 131: 133-145.Search in Google Scholar

Döbbeler P. (2017): Antheridia of Bryum capillare release moving spermatozoids after two months in the airdry state. – Herzogia 30: 501-503.10.13158/heia.30.2.2017.501Search in Google Scholar

Frankham R., Ballou J.D. & Briscoe D.A. (2002): Introduction to conservation genetics. Cambridge: Cambridge University Press, 617 pp.10.1017/CBO9780511808999Search in Google Scholar

Gemmel A.R. (1950): Studies in the Bryophyta: 1. The influence of sexual mechanism on varietal production and distribution of British Musci. – New Phytologist 49: 64-71.10.1111/j.1469-8137.1950.tb05144.xSearch in Google Scholar

Glime J.M. (2011): Ecological and physiological effects of changing climate on aquatic bryophytes. In: Tuba Z., Slack N.G. & Star k L.R. (ed.), Bryophyte ecology and climate change: 93-114. Cambridge: Cambridge University Press.10.1017/CBO9780511779701.007Search in Google Scholar

Hedenäs L. (1992): The genus Pseudocalliergon in northern Europe. – Lindbergia 16: 80-99.Search in Google Scholar

Hedenäs L. (2002): Korvgulmossa Pseudo-calliergon turgescens, en spännande mossa i våra kalkrikaste trakter. – Svensk Botanisk Tidskrift 96: 29-40.Search in Google Scholar

Hedenäs L. (2014): Intraspecific genetic variation in selected mosses of Scandinavian interglacial refugia suggests contrasting distribution history patterns. – Botanical Journal of the Linnean Society 176: 295-310.10.1111/boj.12210Search in Google Scholar

Hedenäs L. (2016): Intraspecific diversity matters in bryophyte conservation - internal transcribed spacer and rpl16 G2 intron variation in European mosses. – Journal of Bryology 38: 173-182.10.1080/03736687.2016.1145522Search in Google Scholar

Hedenäs L. & Bisang I. (2015): Infraspecific diversity in a spore-dispersed species with limited distribution range. – Systematics and Biodiversity 13: 17-27.10.1080/14772000.2014.968234Search in Google Scholar

Hedenäs L. & Bisang I. (2019, in press): Are the remains of the Central European population of Drepanocladus turgescens genetically distinct from Scandinavian populations? – Herzogia.10.13158/heia.32.1.2019.209Search in Google Scholar

Hedenäs L., Herben T., Rydin H. & Söderström L. (1989): Ecology of the invading moss species Orthodontium lineare in Sweden: Spatial distribution and population structure. – Holarctic Ecology 12: 163-172.10.1111/j.1600-0587.1989.tb00835.xSearch in Google Scholar

Heegaard E. (2001): Environmental relationships of perichaetial and sporophyte production in Andreaea spp in western Norway. – Journal of Bryology 23: 97-108.10.1179/jbr.2001.23.2.97Search in Google Scholar

Hohe A., Rensing S.A., Mildner M., Lang D. & Reski R. (2002): Day length and temperature strongly influence sexual reproduction and expression of a novel MADS-Box gene in the moss Physcomitrella patens. – Plant Biology 4: 595-602.10.1055/s-2002-35440Search in Google Scholar

Longton R.E. (1990): Sexual reproduction in bryophytes in relation to physical factors of the environment. In: Chopra R.N. & B hatla S.C. (ed.), Bryophyte development: Physiology and biochemistry: 139-166. Boca Raton, Florida: CRC.10.1201/9780429260568-8Search in Google Scholar

Longton R.E. (1992): Reproduction and rarity in British mosses. – Biological Conservation 59: 89-98.10.1016/0006-3207(92)90566-6Search in Google Scholar

Longton R.E. (1997): Reproductive biology and life-history strategies. – Advances in Bryology 6: 65-101.Search in Google Scholar

Lönnell N., Hylander K., Jonsson B.G. & Sundberg S. (2012): The fate of the missing spores - patterns of realized dispersal beyond the closest vicinity of a sporulating moss. – PLoS ONE 7: e41987.10.1371/journal.pone.0041987341145922870183Search in Google Scholar

Maciel-Silva A.S. & Pereira de Oliveir a M. (2016): How tropical moss sporophytes respond to seasonality: Examples from a semi-deciduous ecosystem in Brazil. – Cryptogamie, Bryologie 37: 227-239.10.7872/cryb/v37.iss3.2016.227Search in Google Scholar

Maciel-Silva A.S. & Válio I.F.M. (2011): Reproductive phenology of bryophytes in tropical rain forests: the sexes never sleep. – Bryologist 114: 708-719.10.1639/0007-2745-114.4.708Search in Google Scholar

Miller N.G. (1980): Mosses as paleoecological indicators of lateglacial terrestrial environments: some North American studies. – Bulletin of the Torrey Botanical Club 107: 373-391.10.2307/2484158Search in Google Scholar

Patiño J., Mateo R.G., Zanatta F., Marquet A., Aranda S.C., Borges P.A.V., Dirkse G., Gabriel R., Gonzalez-Mancebo J.M., Guisan A., Muñoz J., Sim-Sim M. & Vanderpoorten A. (2016): An elevational shift of cryophilous bryophytes in the last century - an effect of climate warming? – Scientific Reports 6: 29156.10.1038/srep29156493253027377592Search in Google Scholar

Pereira M.R., Dambros C.S. & Zartman C.E. (2016): Prezygotic resource-allocation dynamics and reproductive trade-offs in Calymperaceae (Bryophyta). – American Journal of Botany 103: 1838-1846.10.3732/ajb.160024027765777Search in Google Scholar

Persson G., Asp M., Berggreen-Clausen S., Berglöv G., Björck E., Axén Mårtensson J., Nylén L., Ohlsson A., Persson H. & Sjökvist E. (2015): Framtidsklimat i Gotlands län - enligt RCP-scenarier. – Klimatologi 31: 1-61.Search in Google Scholar

Proctor M.C.F. (2011): Climatic responses and limits of bryophytes: comparisons and contrasts with vascular plants. In: Tuba Z., Slack N.G. & Star k L.R. (ed.), Bryophyte ecology and climate change: 35-54. Cambridge: Cambridge University Press.10.1017/CBO9780511779701.004Search in Google Scholar

Rydgren K. & Økland R.H. (2002): Sex distribution and sporophyte frequency in a population of the clonal moss Hylocomium splendens. – Journal of Bryology 24: 207-214.10.1179/037366802125001376Search in Google Scholar

Shortlidge E.E., Eppley S.M., Kohler H., Rosenstiel T.N., Zuniga G.E. & Casanova-Katny A. (2017): Passive warming reduces stress and shifts reproductive effort in the Antarctic moss, Polytrichastrum alpinum. – Annals of Botany 119: 27-38.10.1093/aob/mcw201521836927794516Search in Google Scholar

Shortlidge E.E., Rosenstiel T.N. & Eppley S.M. (2012): Tolerance to environmental desiccation in moss sperm. – New Phytologist 194: 741-750.10.1111/j.1469-8137.2012.04106.xSearch in Google Scholar

Stark L.R. (2001): Widespread sporophyte abortion following summer rains in Mojave Desert populations of Grimmia orbicularis. – Bryologist 104: 115-125.10.1639/0007-2745(2001)104[0115:WSAFSR]2.0.CO;2Search in Google Scholar

Stark L.R. (2002): Phenology and its repercussions on the reproductive ecology of mosses. – Bryologist 105: 204-218.10.1639/0007-2745(2002)105[0204:PAIROT]2.0.CO;2Search in Google Scholar

Stark L.R. (2005): Phenology of patch hydratation, patch temperature and sexual reproductive output over a four-year period in the desert moss Crossidium crassinerve. – Journal of Bryology 27: 231-240.10.1179/174328205X69977Search in Google Scholar

Stark L.R. & Brinda J.C. (2015): Developing sporophytes transition from an inducible to a constitutive ecological strategy of desiccation tolerance in the moss Aloina ambigua: effects of desiccation on fitness. – Annals of Botany 115: 593-603.10.1093/aob/mcu252Search in Google Scholar

Sundberg S. (2002): Sporophyte production and spore dispersal phenology in Sphagnum: the importance of summer moisture and patch characteristics. – Canadian Journal of Botany 80: 543-556.10.1139/b02-060Search in Google Scholar

Sundberg S. & Rydin H. (1998): Spore number in Sphagnum and its dependence on spore capsule size. – Journal of Bryology 20: 1-16.10.1179/jbr.1998.20.1.1Search in Google Scholar

Wilkinson D.M., Koumoutsaris S., Mitchell E.A.D. & Bey I. (2012): Modelling the effect of size on the aerial dispersal of microorganisms. – Journal of Biogeography 39: 89-97.10.1111/j.1365-2699.2011.02569.xSearch in Google Scholar

Williams S.E., Shoo L.P., Isaac J.L., Hoffmann A.A. & Langham G. (2008): Towards an integrated framework for assessing the vulnerability of species to climate change. – PLOS Biology 6: e325 (2621-2626).10.1371/journal.pbio.0060325Search in Google Scholar

eISSN:
2336-3207
Language:
English
Publication timeframe:
3 times per year
Journal Subjects:
Life Sciences, Plant Science, Zoology, Ecology, other