Cite

1. Aït-Sahalia, Y., Mykland, P., Zhang, L. (2005). How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise. Review of Financial Studies, Vol 18, pp. 351-416.10.1093/rfs/hhi016Search in Google Scholar

2. Aït-Sahalia, Y., Mykland, P., Zhang, L. (2011). Ultra-high frequency volatility estimators with dependent microstructure noise. Journal of Econometrics, Vol. 160, No. 1, pp. 160-175.10.1016/j.jeconom.2010.03.028Search in Google Scholar

3. Amaya, D., Christoffersen, P., Jacobs, K., Vasquez, A. (2015). Does realized skewness predict the cross-section of equity returns? Journal of Financial Economics, Vol. 118, No. 1, pp. 135-167.10.1016/j.jfineco.2015.02.009Search in Google Scholar

4. Andersen, T. G., Bollerslev, T., Diebold, F. X., Labys, P. (2001). The Distribution of Realized Exchange Rate Volatility. Journal of the American Statistical Association, Vol. 96, No. 453, pp. 42-55.10.1198/016214501750332965Search in Google Scholar

5. Andersen, T. G., Bollerslev, T. (1998). Answering the Skeptics: Yes, Standard Volatility Models do Provide Accurate Forecasts. International Economics Review, Vol. 39, No. 4, pp. 885-905.10.2307/2527343Search in Google Scholar

6. Arnerić, J., Matković, M., Sorić, P. (2019 a). Comparison of range-based volatility estimators against integrated volatility in European emerging markets. Finance Research Letters, Vol. 28, pp. 118-124.10.1016/j.frl.2018.04.013Search in Google Scholar

7. Arnerić, J., Matković, M. (2019 b). Challenges of integrated variance estimation in emerging stock markets. Journal of Economics and Business: Proceedings of Rijeka Faculty of Economics, Vol. 37, No. 2, pp. 713-739.10.18045/zbefri.2019.2.713Search in Google Scholar

8. Bandi, F. M., Russell, J. R. (2008). Microstructure Noise, Realized Volatility, and Optimal Sampling. Review of Economic Studies, Vol. 75, No. 2, pp. 339-369.10.1111/j.1467-937X.2008.00474.xSearch in Google Scholar

9. Barndorff-Nielsen, O. E., Shephard, N. (2002). Estimating quadratic variation using realized volatility. Journal of Applied Econometrics, Vol. 17, No. 5, pp. 457-477.10.1002/jae.691Search in Google Scholar

10. Barndorff-Nielsen, O. E., Shephard, N. (2006). Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation. Journal of Financial Econometrics, Vol. 4, No. 1, pp. 1-30.10.1093/jjfinec/nbi022Search in Google Scholar

11. Chu, C-Y., Henderson, D., Parmeter, C. (2015). Plug-in Bandwidth Selection for Kernel Density Estimation with Discrete Data. Econometrics, Vol. 3, No. 2, pp. 199-214.10.3390/econometrics3020199Search in Google Scholar

12. Grith, M., Härdle, W. K., Schlenle, M. (2012). Nonparametric Estimation of Risk-Neutral Densities. In Handbook of Computational Finace, Duan J. C., Härdle, W. K., Gentle, J. (Eds.), Springer, Berlin, pp. 277-305.10.1007/978-3-642-17254-0_11Search in Google Scholar

13. Marron, J. S., Nolan, D. (1988). Canonical kernels for density estimation. Statistics & Probability Letters, Vol. 7, No. 3, pp. 195-199.10.1016/0167-7152(88)90050-8Search in Google Scholar

14. Neuberger, A. (2012). Realized skewness. Review of Financial Studies, Vol. 25, No. 11, pp. 3423-3455.10.1093/rfs/hhs101Search in Google Scholar

15. Oomen, R. C. A. (2006). Properties of Realized Variance under Alternative Sampling Schemes. Journal of Business & Economic Statistics, Vol. 24, No. 2, pp. 219-237.10.1198/073500106000000044Search in Google Scholar

16. Park, B. U., Marron J. S. (1992). On the use of pilot estimators in bandwidth selection. Journal of Nonparametric Statistics, Vol. 1, No. 3, pp. 231-240.10.1080/10485259208832524Search in Google Scholar

17. Parzen, E. (1962). On Estimation of a Probability Density Function and Mode. The Annals of Mathematical Statistics, Vol. 33, No. 3, pp. 1065-1076.10.1214/aoms/1177704472Search in Google Scholar

18. Racine, J. S. (2008). Nonparametric Econometrics: A Primer. Foundations and Trends in Econometrics, Vol. 3, No. 1, pp. 1-88.10.1561/0800000009Search in Google Scholar

19. Rosenblatt, M. (1956). Remarks on Some Nonparametric Estimates of a Density Function. The Annals of Mathematical Statistics, Vol. 27, No. 3, pp. 832-837.10.1214/aoms/1177728190Search in Google Scholar

20. Scott, D. W. (2015). Kernel Density Estimators. In Multivariate Density Estimation: Theory, Practice, and Visualization, Scott, D. W. (Ed.), John-Wiley & Sons, Chichester, pp. 137-216.10.1002/9781118575574.ch6Search in Google Scholar

21. Sheather, S. J., Jones, M. C. (1991). A Reliable Data-Based Bandwidth Selection Method for Kernel Density Estimation. Journal of the Royal Statistical Society, Vol. 53, No. 3, pp. 683-690.10.1111/j.2517-6161.1991.tb01857.xSearch in Google Scholar

22. Shen, K., Yao, J., Li, W. K. (2018). On the surprising explanatory power of higher realized moments in practice. Statistics and its Interface, Vol. 11. No. 1, pp. 153-168.10.4310/SII.2018.v11.n1.a13Search in Google Scholar

23. Silverman, B. W. (1986). Density estimation in action. In Density Estimation for Statistics and Data Analysis, Silverman. B. W. (Ed.), Chapman & Hall, New York, pp. 120-158.10.1201/9781315140919-6Search in Google Scholar

24. Terrel, G. R., Scott, D. V. (1992). Variable Kernel Density Estimation. The Annals of Statistics, Vol. 20, No. 3, pp. 1236-1265.10.1214/aos/1176348768Search in Google Scholar

25. Zhang, L. (2011). Estimating covariation: Epps Effect, microstructure noise. Journal of Econometrics, Vol. 160, No. 1, pp. 33-47.10.1016/j.jeconom.2010.03.012Search in Google Scholar

26. Zhang, L., Mykland, P., Aït-Sahalia, Y. (2005). A Tale of Two Time Scales. Journal of American Statistical Association, Vol. 100, No. 472, pp. 1394–1411.10.1198/016214505000000169Search in Google Scholar

27. Wand, M. P., Jones, M. C. (1995). Kernel Smoothing. Chapman & Hall, New York.10.1007/978-1-4899-4493-1Search in Google Scholar