Cite

1. Urey HC, Brickwedde FG, Murphy GM. A hydrogen isotope of mass 2 and its concentration. Phys Rev. 1931;40(1):1-15.10.1103/PhysRev.40.1Search in Google Scholar

2. Brand WA, Coplen TB. Stable isotope deltas: tiny, yet robust signatures in nature. Isot Environ Health S. 2012;48(3):393-409.10.1080/10256016.2012.66697722462621Search in Google Scholar

3. Mark H. Thiemens introduction to chemistry and applications in nature of mass independent isotope effects special feature. Proc Natl Acad Sci USA. 2013;110(44):17631-7.10.1073/pnas.1312926110381645824167299Search in Google Scholar

4. Newell RR. What’s new in isotopes. Calif Med. 1950;73(1):115.Search in Google Scholar

5. Jiping L, Xiaobo L. Deuteride. Deuteride materials. Amazon Digital Services LLC; 2019.Search in Google Scholar

6. Sukhninder K, Monika G. Deuteration as a tool for optimization of metabolic stability and toxicity of drugs. Glob J Pharmaceu Sci. 2017;1(14):001-0011.Search in Google Scholar

7. Ding Z, Hou Y, Wang S., Sun T, Ma M, Guan H, Li W. Synthesis of deuterium-enriched and fluorine-substituted plinabulin derivatives and evaluation of their antitumor activities. Mol Divers. 2017;21(3):577-83.10.1007/s11030-017-9742-y28488201Search in Google Scholar

8. Ricardo P, Grossberg G. AVP-786 for the treatment of agitation in dementia of the Alzheimer’s type. Expert Opin Investig Drugs. 2017; 26(1):121-32.10.1080/13543784.2017.126772627936965Search in Google Scholar

9. Merbel V, Bronsema KJ, Gorman SH, BakhtiaR. Monitoring of the deuterated and nondeuterated forms of levodopa and five metabolites in plasma and urine by LC-MS/MS. Bioanal. 2019;11(4):279-93.10.4155/bio-2018-023930786726Search in Google Scholar

10. Russak EM, Bednarczyk EM. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019;53(2):211-6.10.1177/106002801879711030136594Search in Google Scholar

11. Dean L. Deutetrabenazine Therapy and CYP2D6 Genotype. Med Genet Summ. 2012;9(1):155-65.Search in Google Scholar

12. Limandri BJ. Tardive dyskinesia: New treatments available. J Psychosoc Nurs Ment Health Serv. 2019;57(5):11-4.10.3928/02793695-20190410-0231042295Search in Google Scholar

13. Timmins GS. Deuterated drugs; updates and obviousness analysis. Expert Opin Ther Pat. 2017;27(12):1353-61.10.1080/13543776.2017.137835028885861Search in Google Scholar

14. Kusinski M, Nagesh J, Gladkikh M, Izmaylov A, Jockusch RA. Deuterium isotope effect in fluorescence of gaseous oxazine dyes. Phys Chem Chem Phys. 2019;21(10):5759-70.10.1039/C8CP05731A30801583Search in Google Scholar

15. Butler D. The scattering of slow neutrons by heavy water: I. Intramolecular scattering. Proc Phys Soc. 2002;81(2):276-93.10.1088/0370-1328/81/2/309Search in Google Scholar

16. Atchison F, Brandt B, Bryś T, Daum M, Fierlinger P, Hautle P, et al. Measured total cross sections of slow neutrons scattered by gaseous and liquid 2H(2). Phys Rev Lett. 2005;94(21):212-502.10.1103/PhysRevLett.94.21250216090315Search in Google Scholar

17. Kuz’mina NE, Moiseev SV, Krylov VI, Deryabin AS, Yashkir VA, Merkulov VA. Validation of an NMR-spectroscopic method for authenticity confirmation of buserelin acetate pharmaceutical substance. Pharm Chem J. 2018;52:159-65.10.1007/s11094-018-1783-8Search in Google Scholar

18. Koszinowski K, Stephenson DS. Large solvent isotope effect associated with the hydrolysis of allylindium iodide. J Org Chem. 2018;83(23):14314-22.10.1021/acs.joc.8b0197130352156Search in Google Scholar

19. Muccitelli W-Y. Wen Solubilities of hydrogen and deuterium gases in water and their isotope fractionation factor. J Sol Chem. 1978;7:257-67.10.1007/BF00644273Search in Google Scholar

20. Shuangxi F, Qiding Z, Hongbo G, Daobing W, Guohui L, Zhanbin H. Elemental profile and oxygen isotope ratio (δ18O) for verifying the geographical origin of Chinese wines. JFDA. 2018;26(3):1033-44.Search in Google Scholar

21. Xiao W, Wen X, Wang W, Xiao Q, Xu J, Cao C, et al. Spatial distribution and temporal variability of stable water isotopes in a large and shallow lake. Isot Environ Health S. 2016;52(4-5):443-54.10.1080/10256016.2016.114744226983027Search in Google Scholar

22. Gabriel JB, James, RE, Lesley AC, Erik TE. Stable isotope ratios of tap water in the contiguous United States. Water Resour Res. 2007;43(3):45-65.Search in Google Scholar

23. Schoenemann SW, Schauer AJ, Steig EJ. Measurement of SLAP and GISP δ17O and proposed VSMOW-SLAP normalization for δ17O and 17O(excess). Rapid Commun Mass Spectrom. 2013;27(5):582-90.10.1002/rcm.648623413217Search in Google Scholar

24. Xie X, Zubarev RA. On the effect of planetary stable isotope compositions on growth and survival of terrestrial organisms. PLoS One. 2017;12(1):1-9.10.1371/journal.pone.0169296521576428052100Search in Google Scholar

25. Shahram E, Abolghasem J, Hadi V, Ali S. Are crystallinity parameters critical for drug solubility prediction? J Sol Chem. 2015; 44(12):2297-315.10.1007/s10953-015-0410-5Search in Google Scholar

26. Eleftheriadis GK. Mantelou P, Karavasili C, Chatzopoulou P, Katsantonis DM, Irakli M, et al. Development and characterization of a self-nanoemulsifying drug delivery system comprised of rice bran oil for poorly soluble drugs. AAPS Pharm Sci Tech. 2019; 20(2):78-89.10.1208/s12249-018-1274-y30635752Search in Google Scholar

27. Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharmaceutics. 2012;20(12):177-95.10.5402/2012/195727339948322830056Search in Google Scholar

28. Wang J, Liao Y, Xia J, Wang Z, Mo X, Feng J, et al. Mechanical micronization of lipoaspirates for the treatment of hypertrophic scars. Stem Cell Res Ther. 2019;10(1):2-10.10.1186/s13287-016-0456-3521655028057064Search in Google Scholar

29. Syroeshkin AV, Uspenskaya EV, Pleteneva TV, Morozova MA, Maksimova TV, Koldina AM, et al. Mechanochemical activation of pharmaceutical substances as a factor for modification of their physical, chemical and biological properties. Int J App Pharm. 2019; 11(3):118-23.10.22159/ijap.2019v11i3.32413Search in Google Scholar

30. Timur SS, Yöyen-Ermiş D, Esendağlı G, Yonat S, Horzum U, Esendağlı G, Gürsoy RN. Efficacy of a novel LyP-1-containing self-microemulsifying drug delivery system (SMEDDS) for active targeting to breast cancer. Eur J Pharm Biopharm. 2019; 136(1):138-46.10.1016/j.ejpb.2019.01.01730660694Search in Google Scholar

31. Livingstone G. Franks F, Aspinal LJ. The mutarotation rates of glucose. J Solution Chem. 1977;6(1):203-10.Search in Google Scholar

32. Ulyantsev AS, Uspenskaya EV, Pleteneva TV, Popov PI, Samsoni-Todorov O, Goncharuk VV, Syroeshkin AV. Rapid determination of the identity of aqueous drug solutions. Pharmaceut Chem J. 2009; 43(12):687-91.10.1007/s11094-010-0381-1Search in Google Scholar

33. Goncharuk VV, Pleteneva TV, Grebennikova TV. Syroeshkin AV, Uspenskaya EV, Antipova NV, et al. Determination of Biological Activity of Water Having a Different Isotope Ratio of Protium and Deuterium. J Water Chem Tech. 2018;40(1):27-34.10.3103/S1063455X18010058Search in Google Scholar

34. Syroeshkin AV, Pleteneva TV, Uspenskaya EV, Levitskaya OV, Tribot-Laspiere MA, Zlatsky IA, et al. Polarimetric research of pharmaceutical substances in aqueous solutions with different water isotopologues ratio. I J App Pharm. 2018;10(5):243-8.10.22159/ijap.2018v10i5.28151Search in Google Scholar

35. The United States Pharmacopeia and National Formulary USP 35– NF 31. Rockville: The United States Pharmacopeial Convention, Inc;2013.Search in Google Scholar

36. Anfimova EV, Uspenskaya EV, Pleteneva TV, Syroeshkin AV. Solubility kinetics of drugs studied by lalls method in water solutions with various hydrogen isotope content. Drug development & registration. 2017;1(1):150-5.Search in Google Scholar

37. Henry NС. Diffraction before destruction. B Biol Sci. 2014;17:1-13.Search in Google Scholar

38. ISO 13320:2009 Particle Size Analysis – Laser Diffraction Methods. Part 1. General Principles; 2009.Search in Google Scholar

39. Yacyshyn MB. Deuterium isotope effects for inorganic oxyacids at elevated temperatures using raman spectroscopy. Guelph, Ontario, Canada; 2013.Search in Google Scholar

40. Arnett EM, Mckelvey DR. Solute-solvent interactions. Marcel Dekker, New York; 1969.Search in Google Scholar

41. Goncharuk VV, Syroeshkin AV, Pleteneva TV, Uspenskaya EV, Levitskaya OV, Tverdislov VA. On the possibility of chiral structure-density submillimeter inhomogeneities existing in water. J Water Chem Tech. 2017;39(1):319-24.10.3103/S1063455X17060029Search in Google Scholar

42. Bacsik Z, Canongiam JN, Lopes MF, Costa G, Jancsó G, Mink J, Pádua AA. Solubility isotope effects in aqueous solutions of methane. J Chem Phys. 2002;116(24):816-10824.10.1063/1.1480012Search in Google Scholar

43. Michael R, Duff Jr, Elizabeth E. Thermodynamics and solvent linkage of macromolecule-ligand interactions. Methods. 2015;76(1):51-60.Search in Google Scholar

44. Prince V, Bowling K.C. Topiramate in the treatment of cocaine use disorder. Am J Health Syst Pharm. 2018;75(1):13-22.10.2146/ajhp16054229273608Search in Google Scholar

45. Bruno E, Nicoletti A, Quattrocchi G, Allegra R, Filippini G, Colosimo C, Zappia M. Topiramate for essential tremor. Cochrane Database Syst Rev. 2017;4(1):87-90.10.1002/14651858.CD009683.pub2647824028409827Search in Google Scholar

46. McGee EU, Samuel E, Boronea B, Dillard N, Milby MN, Lewis SJ. Quinolone Allergy. Pharmacy. 2019;7(3):97-109.10.3390/pharmacy7030097678978331330937Search in Google Scholar

47. Muhlenweg Н, Hirleman ED. Laser diffraction spectroscopy: Influence of particle shapeand a shape adaptation technique. Par Pa. Sys Charact. 1998;15(4):163-9.Search in Google Scholar

48. Shaikh HK, Kshirsagar RV, Patil SG. Mathematical models for drug release characterization: A review. World J Phar Sci. 2015;4:324-38.Search in Google Scholar

49. Bartlett JW, Frost C. Reliability, repeatability and reproducibility: analysis of measurement errors in continuous variables. Ultrasound Obstet Gynecol. 2008;31(4):466-75.10.1002/uog.525618306169Search in Google Scholar

50. Piskulich ZA, Mesele OO, Thompson WH. Activation energies and beyond. J Phys Chem. 2019;123(33):7185-94.10.1021/acs.jpca.9b0396731250645Search in Google Scholar

51. Carvalho-Silva VH, Coutinho ND, Aquilant, V. Temperature dependence of rate processes beyond Arrhenius and Eyring activation and transitivity. Front Chem. 2019;7(1):1-11.10.3389/fchem.2019.00380654883131192196Search in Google Scholar

52. Gu H. Advances in kinetic isotope effect measurement techniques for enzyme mechanism study. Molecules. 2013;18(8):9278-92.10.3390/molecules18089278627025723917115Search in Google Scholar

53. Francis K. On the use of nancompetitive kinetic isotope effects to investigate flavoenzyme mechanism. Metods Enzymol. 2019; 620(1):115-43.10.1016/bs.mie.2019.03.00831072484Search in Google Scholar

54. Uspenskaya EV, Anfimova EV, Syroeshkin AV, Pleteneva TV. Kinetics of pharmaceutical substance solubility in water with different hydrogen isotopes content. Indian J Pharm Sci. 2018;80(2):318-24.Search in Google Scholar

55. Kenneth BW. The Deuterium isotope effect. Chem Rev. 1955; 55(4):713-43.10.1021/cr50004a004Search in Google Scholar

56. Saunders WH. Kinetic Isotope effects. Survey of Progress in Chemistry. 1966;3(1):109-46.10.1016/B978-1-4832-0005-7.50009-7Search in Google Scholar

57. Hama T, Hirokazu U, Kouchi A, Watanabe N. Quantum tunneling observed without its characteristic large kinetic isotope effects. Proc Natl Acad Sci USA. 2015;112(24):7438-43.10.1073/pnas.1501328112447598326034285Search in Google Scholar

58. Arnett EM, McKelvey DR. A large solvation enthalpy effect in highly aqueous t-butyl alcohol solutionsJ. Am Chem Soc. 1965;87(6):1393-4.10.1021/ja01084a049Search in Google Scholar

59. Némethy G, Scheraga HA. Structure of water and hydrophobic bonding in proteins. IV. The thermodynamic properties of liquid deuterium oxide. J Chem Phys. 1964;41:680-96.10.1063/1.1725946Search in Google Scholar

60. Mysels KJ. Light scattering and the structure of pure water. JACS. 1964;86(17):3503-5.10.1021/ja01071a021Search in Google Scholar

61. Kresge AJ, Powell MF. The kinetics of isotope exchange reactions: Use of initial rates to measure isotope effects on carbon acid ionization. Int Jf Chem Kinet. 1982;14(1):19-34.10.1002/kin.550140104Search in Google Scholar

62. Syroeshkin AV, Pleteneva TV, Uspenskaya EV, Zlatskiy IA, Antipova NA, Grebennikova TV, Levitskaya OV. D/H control of chemical kinetics in water solutions under low deuterium concentrations. Chem Engin J. 2018;377:1-2.Search in Google Scholar

63. Louis L, Wong H. Predicting oral drug absorption: Mini review on physiologically based pharmacokinetic models. Pharmaceutics. 2017; 9(4):41-55.10.3390/pharmaceutics9040041575064728954416Search in Google Scholar

64. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, et al. DrugBank 5.0: a major update to the Drug Bank database for 2018. Nucleic Acids Res. 2017;46(D1):D1074-D1082.10.1093/nar/gkx1037575333529126136Search in Google Scholar

65. National Center for Biotechnology Information. Pub Chem Database. Verapamil, CID=2520, https://pubchem.ncbi.nlm.nih.gov/compound/Verapamil (accessed on Dec. 13, 2019)Search in Google Scholar

66. Ahmad I, Bano R, Musharraf SG, Ahmed S, Qamar A, Bhatti MS, Shad Z. Photodegradation of moxifloxacin in aqueous and organic solvents: A kinetic study. AAPS Pharm Sci Tech. 2014;15(1):1588-97.10.1208/s12249-014-0184-x424542625139764Search in Google Scholar

67. Matsuura K, Suto C, Akura J, Inoue Y. Comparison between intracameral moxifloxacin administration methods by assessing intraocular concentrations and drug kinetics. Graefe’s Arch Clin Expl Ophthal. 2013;251(1):1955-9.10.1007/s00417-013-2294-723546399Search in Google Scholar

68. Avcıbaşı U, Demiroğlu H, Sakarya S. Ünak P, Tekin V, Ateş B. The effect of radiolabeled antibiotics on biofilm and microorganism. J Radioanal Nucl Chem. 2018;316(1):275-87.10.1007/s10967-018-5750-3Search in Google Scholar

eISSN:
2300-6676
ISSN:
2084-980X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other, Pharmacology, Toxicology, Pharmacy