Cite

1. Armstrong DG., Jude EB.: The role of matrix metalloproteinases in wound healing. J Am Pediatr Med Assoc., 92, 12, 2002.Search in Google Scholar

2. Bouletreau P.J., Steinbrech D., Spector J.A. et al: Gene expression of transforming growth factor-beta 3 and tissue inhibitor of metalloproteinase type 1 during membranous bone healing in rats. J Craniofac Surg., 11, 521, 2000.Search in Google Scholar

3. Brew K., Dinakarpandian D., Nagase H.: Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta, 1477, 267, 2000.10.1016/S0167-4838(99)00279-4Search in Google Scholar

4. Cha H., Kopetzki E., Huber R. et al. Structural basis of the adaptive molecular recognition by MMP9. J Mol Biol., 320, 1065, 2002.Search in Google Scholar

5. Chubinskaya S., Huch K., Mikecz K. et al.: Chondrocyte matrix metalloproteinase-8: up-regulation of neutrophil collagenase by interleukin-1 beta in human cartilage from knee and ankle joints. Lab Invest., 74, 232, 1996.Search in Google Scholar

6. Cuzner M.L., Gveric D., Strand C. et al.: The expression of tissue-type plasminogen activator, matrix metalloproteases and endogenous inhibitors in the central nervous system in multiple sclerosis: comparison of stages in lesion evolution. J Neuropathol Exp Neurol., 55, 1194, 1996.Search in Google Scholar

7. Danielsen P.L., Holst A.V., Maltesen H.R. et al.: Matrix metalloproteinase-8 overexpression prevents proper tissue repair. Surgery, 150, 897, 2011.Search in Google Scholar

8. Dejonckheere E., Vandenbroucke R.E., Libert C.: Matrix metalloproteinase8 has a central role in inflammatory disorders and cancer progression. Cytokine Growth Factor Rev., 22, 73, 2011.Search in Google Scholar

9. Docherty A.J., Lyons A., Smith B.J. et al.: Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroidpotentiating activity. Nature, 318, 66, 1985.Search in Google Scholar

10. Duerr S., Stremme S., Soeder S., et al.: MMP-2/gelatinase A is a gene product of human adult articular chondrocytes and is increased in osteoarthritic cartilage. Clin Exp Rheumatol., 22, 603, 2004.Search in Google Scholar

11. Fic P., Zakrocka I., Kurzepa J., Stepulak A.: Mat r ix metalloproteinases and atherosclerosis. Postepy Hig Med Dosw (Online), 65, 16, 2011.Search in Google Scholar

12. Galazka G., Windsor L.J., Birkedal-Hansen H., Engler JA.: APMA (4-aminophenylmercuric acetate) activation of stromelysin-1 involves protein interactions in addition to those with cysteine-75 in the propeptide. Biochemistry, 35, 11221, 1996.Search in Google Scholar

13. Gross J., Lapiere C.M.: Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci USA., 48, 1014, 1962.Search in Google Scholar

14. Guedez L., Stetler-Stevenson W.G., Wolff L. et al.: In vitro suppression of programmed cell death of B cells by tissue inhibitor of metalloproteinases-1. J Clin Invest., 102, 2002, 1998.Search in Google Scholar

15. Hatibović-Kofman S., Raimundo L., Zheng L. et al.: Fracture resistance and histological findings of immature teeth treated with mineral trioxide aggregate. Dent Traumatol., 24, 272, 2008.Search in Google Scholar

16. Isnard N., Legeais J.M., Renard G., Robert L.: Effect of hyaluronan on MMP expression and activation. Cell Biol Int., 25, 735, 2001.Search in Google Scholar

17. Kalfas I.H.: Principles of bone healing. Neurosurg Focus, 10, 7, 2001.10.3171/foc.2001.10.4.2Search in Google Scholar

18. Kapila S., Xie Y., Wang W.: Induction of MMP-1 (collagenase-1) by relaxin in fibrocartilaginous cells requires both the AP-1 and PEA-3 promoter sites. Orthod Craniofac Res., 12, 178, 2009.Search in Google Scholar

19. Knauper V., Cowell S., Smith B. et al.: The role of the C-terminal domain of human collagenase-3 (MMP-13) in the activation of procollagenase-3, substrate specificity, and tissue inhibitor of metalloproteinase interaction. J Biol Chem., 272, 7608, 1997.Search in Google Scholar

20. Krane S.M.: Is collagenase (matrix metalloproteinase-1) necessary for bone and other connective tissue remodeling? Clin Orthop Relat Res., 313, 47, 1995.Search in Google Scholar

21. Kurzepa J., Bartosik-Psujek H., Suchozebrska-Jesionek D. et al.: Role of matrix metalloproteinases in the pathogenesis of multiple sclerosis. Neurol Neurochir Pol., 39, 63, 2005.Search in Google Scholar

22. Lee J.Y., Taub P.J., Wang L. et al.: Identification of CITED2 as a negative regulator of fracture healing. Biochem Biophys Res Commun., 387, 641, 2009.Search in Google Scholar

23. Leeman M.F., Curran S., Murray G.I.: The structure, regulation, and function of human matrix metalloproteinase-13. Crit Rev Biochem Mol Biol., 37, 149, 2002.10.1080/10409230290771483Search in Google Scholar

24. Lenglet S., Mach F., Montecucco F.: Role of mat r ix metalloproteinase-8 in atherosclerosis. Mediators Inflamm., 2013, 659282, 2013.Search in Google Scholar

25. Li H., Ezra D.G., Burton M.J., Bailly M.: Doxycycline prevents matrix remodeling and contraction by trichiasis-derived conjunctival fibroblasts. Invest Ophthalmol Vis Sci., 54, 4675, 2013.Search in Google Scholar

26. Li N.G., Shi Z.H., Tang Y.P. et al.: New hope for the treatment of osteoarthritis through selective inhibition of MMP-13. Curr Med Chem., 18, 977, 2011.Search in Google Scholar

27. Loy M., Burggraf D., Martens K.H. et al.: A gelatin in situ-overlay technique localizes brain matrix metalloproteinase activity in experimental focal cerebral ischemia. J Neurosci Methods, 116, 125, 2002.Search in Google Scholar

28. Madro A., Kurzepa J., Czechowska G. et al. Gelatinase activities and TIMP-2 serum level in alcohol cirrhosis and chronic pancreatitis. Curr Iss Pharm Med Sci., 26, 57, 2013.Search in Google Scholar

29. Madsen D.H., Jurgensen H.J., Ingvarsen S. et al.: Differential Actions of the Endocytic Collagen Receptor uPARAP/Endo180 and the Collagenase MMP-2 in Bone Homeostasis. PLoS One, 8, e71261, 2013.10.1371/journal.pone.0071261Search in Google Scholar

30. McCawley L.J., Matrisian L.M.: Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol., 13, 534, 2001.Search in Google Scholar

31. Mott J.D., Werb Z.: Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol., 16, 558, 2004.Search in Google Scholar

32. Murphy G., Knauper V.: Relating matrix metalloproteinase structure to function: why the “hemopexin” domain? Matrix Biol., 15, 511, 1997.Search in Google Scholar

33. Nagase H., Visse R., Murphy G.: Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res., 69, 562, 2006.Search in Google Scholar

34. Nomura S., Yoshimura K., Akiyama N. et al: HMG-CoA reductase inhibitors reduce matrix metalloproteinase-9 activity in human varicose veins. Eur Surg Res., 37, 370, 2005.Search in Google Scholar

35. Opdenakker G., Van den Steen P.E., Van Damme J.: Gelatinase B: a tuner and amplifier of immune functions. Trends Immunol., 22, 571, 2001.Search in Google Scholar

36. Palosaari H., Wahlgren J., Larmas M. et al.: The expression of MMP-8 in human odontoblasts and dental pulp cells is down-regulatedby TGF-beta1. J Dent Res., 79, 77, 2000.Search in Google Scholar

37. Pardo A., Selman M.: MMP-1: the elder of the family. Int J Biochem Cell Biol., 37, 283, 2005.10.1016/j.biocel.2004.06.017Search in Google Scholar

38. Peppin G.J., Weiss S.J.: Act ivat ion of the endogenous metalloproteinase, gelatinase, by triggered human neutrophils. Proc Natl Acad Sci USA., 83, 4322, 1986.10.1073/pnas.83.12.4322Search in Google Scholar

39. Polette M., Nawrocki-Raby B., Gilles C. et al. Tumour invasion and matrix metalloproteinases. Crit Rev Oncol Hematol., 49, 179, 2004.10.1016/j.critrevonc.2003.10.008Search in Google Scholar

40. Rowsell S., Hawtin P., Minshull C.A. et al.: Crystal structure of human MMP9 in complex with a reverse hydroxamate inhibitor. J Mol Biol., 319, 173, 200210.1016/S0022-2836(02)00262-0Search in Google Scholar

41. Sang Q.X., Birkedal-Hansen H., Van Wart H.E.: Proteolytic and non-proteolytic activation of human neutrophil progelatinase B. Biochim Biophys Acta, 1251, 99, 1995.Search in Google Scholar

42. Sato H., Takino T., Okada Y. et al. A matrix metalloproteinase expressed on the surface of invasive tumor cells. Nature, 370, 61, 1994.Search in Google Scholar

43. Schmidt R., Bultmann A., Ungerer M. et al.: Extracellular matrix metalloproteinase inducer regulates matrix metalloproteinase activity in cardiovascular cells: implications in acute myocardial infarction. Circulation, 113, 834, 2006.Search in Google Scholar

44. Seltzer J.L., Lee A.Y., Akers K.T. et al.: Activation of 72-kDa type IV collagenase/gelatinase by normal fibroblasts in collagen lattices is mediated by integrin receptors but is not related to lattice contraction. Exp Cell Res., 213, 365, 1994.Search in Google Scholar

45. Serra P., Bruczko M., Zapico J.M. et al.: MMP-2 selectivity in hydroxamate-type inhibitors. Curr Med Chem., 19, 1036, 2012.Search in Google Scholar

46. Smigielski J., Kołomecki K., Ziemniak P. et al.: Degradation of collagen by metalloproteinase 2 in patients with abdominal hernias. Eur Surg Res., 42, 118, 2009.Search in Google Scholar

47. Stetler-Stevenson W.G., Bersch N., Golde D.W.: Tissue inhibitor of metalloproteinase-2 (TIMP-2) has erythroid-potentiating activity. FEBS Lett., 296, 231, 1992.Search in Google Scholar

48. Stickens D., Behonick D.J., Ortega N. et al.: Altered endochondral bone development in matrix metalloproteinase-13 deficient mice. Development, 131, 5883, 2004.Search in Google Scholar

49. Uchida M., Shima M., Chikazu D. et al.: Transcriptional induction of matrix metalloproteinase-13 (collagenase-3) by 1α,25- dihydroxyvitamin D3 in mouse osteoblastic MC3T3-E1 cells. J Bone Min Res., 16, 221, 2001.Search in Google Scholar

50. Van Lint P., Libert C.: Matrix metalloproteinase-8: cleavage can be decisive. Cytokine Growth Factor Rev., 17, 217, 2006.Search in Google Scholar

51. Vu T.H., Shipley J.M., Bergers G. et al.: MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell, 93, 411, 1998.Search in Google Scholar

52. Wang X., Yu Y.Y., Lieu S. et al.: MMP9 regulates the cellular response to inflammation after skeletal injury. Bone, 52,111, 2013.Search in Google Scholar

53. Weiss S., Zimmermann G., Pufe T. et al.: The systemic angiogenic response during bone healing. Arch Orthop Trauma Surg., 127, 989, 2009.Search in Google Scholar

54. White L.A., Mitchell T.I., Brinckerhoff CE.: Transforming growth factor beta inhibitory element in the rabbit matrix metalloproteinase-1 (collagenase-1) gene functions as a repressor of constitutive transcription. Biochim Biophys Acta, 1490, 259, 2000.Search in Google Scholar

55. Whitelock J.M., Murdoch A.D., Iozzo R.V., Underwood P.A.: The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem., 271, 10079, 1996.10.1074/jbc.271.17.100798626565Search in Google Scholar

56. Wilhelm S.M., Collier I.E., Marmer B.L. et al.: SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem., 264, 17213, 1989.Search in Google Scholar

57. Witty J.P., Foster S.A., Stricklin G.P. et al.: Parathyroid hormoneinduced resorption in fetal rat limb bones is associated with production of the metalloproteinases collagenase and gelatinase B. J Bone Min Res., 11, 72, 1996.Search in Google Scholar

58. Yu Y., Koike T., Kitajima S. et al.: Temporal and quantitative analysis of expression of metalloproteinases (MMPs) and their endogenous inhibitors in atherosclerotic lesions. Histol Histopathol., 23, 1503, 2008. Search in Google Scholar

eISSN:
2300-6676
ISSN:
2084-980X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other, Pharmacology, Toxicology, Pharmacy