Open Access

Multivariate Regularized Newton and Levenberg-Marquardt methods: a comparison on synthetic data of tumor hypoxia in a kinetic framework

Communications in Applied and Industrial Mathematics's Cover Image
Communications in Applied and Industrial Mathematics
Special Issue on Mathematical Models and Methods in Biology, Medicine and Physiology. Guest Editors: Michele Piana, Luigi Preziosi

Cite

1. K. W-j, J. S. Rasey, M. L. Evans, J. R. Grierson, T. K. Lewellen, M. M. K. K. A. Graham, and G. T. W, Imaging of hypoxia in human tumors with [f-18]fluoromisonidazole int, J. Radiat. Oncol. Biol. Phys., vol. 22, pp. 199–212, 1992.10.1016/0360-3016(92)91001-4Search in Google Scholar

2. J. S. Rasey, K. W-j, M. L. Evans, L. M. Peterson, T. K. G. M. M. Lewellen, and K. K. A, Quantifying regional hypoxia in human tumors with positron emission tomography of [18f]fluoromisonidazole: a pretherapystudy of 37 patients int, J. Radiat. Oncol. Biol. Phys., vol. 36, pp. 417–28, 1996.10.1016/S0360-3016(96)00325-2Search in Google Scholar

3. M. Nordsmark, M. Overgaard, and J. Overgaard, Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck radiother, Oncol., vol. 41, pp. 31–9, 1996.10.1016/S0167-8140(96)91811-3Search in Google Scholar

4. M. Nordsmark and J. Overgaard, A confirmatory prognostic study on oxygenation status and loco-regional control in advanced head and neck squamous cell carcinoma treated by radiation therapy radiother, Oncol., vol. 57, pp. 39–43, 2000.10.1016/S0167-8140(00)00223-1Search in Google Scholar

5. J. J. G. M. M. Casciari and R. J. S, A modeling approach for quantifying tumor hypoxia with [f-18]fluoromisonidazole pet time-activity data, Phys. Med., vol. 22, pp. 1127–39, 1995.10.1118/1.597506Search in Google Scholar

6. D. Thorwarth, S. M. Eschmann, F. Paulsen, and M. Alber, A kinetic model for dynamic [18f]-fmiso pet data to analyse tumour hypoxia, Phys. Med., pp. 2209–24, 2005.10.1088/0031-9155/50/10/002Search in Google Scholar

7. F. Delbary, S. Garbarino, and V. Vivaldi, Compartmental analysis of dynamic nuclear medicine data: models and identifiability, Inverse Problems, vol. 32, no. 12, p. 125010, 2016.10.1088/0266-5611/32/12/125010Search in Google Scholar

8. N. M. Alpert, R. D. Badgaiyan, and E. F. A. J. Livni, A novel method for noninvasive detection of neuromodulatory changes in specific neurotransmitter systems, Neuroimage, vol. 19, pp. 1049–60, 2003.10.1016/S1053-8119(03)00186-1Search in Google Scholar

9. F. Delbary and S. Garbarino, Compartmental analysis of dynamic nuclear medicine data: regularization procedure and application to physiology arxiv, Inverse Problems in Science and Engineering, vol. 0, pp. 1–19, 2019.Search in Google Scholar

10. H. M. Hudson and R. S. Larkin, Accelerated image reconstruction ordered subsets of projection data,, IEEE Trans Med Imaging, vol. 13, pp. 601–9, 1994.10.1109/42.36310818218538Search in Google Scholar

11. T. Sasser, Preclinical imaging: improving translational power in oncology drug discovery, Drug Discovery, vol. 1, 2016.Search in Google Scholar

12. S. R. Golish, J. D. Hove, and H. R. G. S. S. Schelbert, A fast nonlinear method for parametric imaging of myocardial perfusion by dynamic 13n- ammonia pet, J. Nucl. Med, vol. 42, pp. 924–31, 2001.Search in Google Scholar

eISSN:
2038-0909
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics