Open Access

Seasonal (Kharif, Rabi and Zaid) Precipitation, Potential Evapotranspiration and Aridity Index with Respect to Various Agro Ecological Zones of India


Cite

Ahmad, F., & Goparaju, L. (2017). Land evaluation in terms of agroforestry suitability, an approach to improve livelihood and reduce poverty: a FAO based methodology a geospatial solution: a case study of Palamu district, Jharkhand, India. Ecological Questions, Vol. 25, 67–84, available at: https://doi.org/10.12775/EQ.2017.006.10.12775/EQ.2017.006Search in Google Scholar

Ahmad, F., Uddin, M. M., & Goparaju, L. (2018). Agroforestry suitability mapping of India: geospatial approach based on FAO guidelines. Agroforest Systems, available at: https://doi.org/10.1007/s10457-018-0233-7.10.1007/s10457-018-0233-7Open DOISearch in Google Scholar

Ashaolu, E. D., & Iroye, K. A. (2018). Rainfall and potential evapotranspiration patterns and their effects on climatic water balance in the Western Lithoral Hydrological Zone of Nigeria. Ruhuna Journal of Science, Vol. 9, Issue 2, 92-116, available at: http://doi.org/10.4038/rjs.v9i2.45.10.4038/rjs.v9i2.45Open DOISearch in Google Scholar

Balasubramanian, A. (2013). Agro-Ecological Zones of India, available at: https://www.researchgate.net/publication/314206350_AGROECOLOGICAL_ZONES_OF_INDIA.Search in Google Scholar

Bandyopadhyay, A., Bhadra, A., Raghuwanshi, N.S., & Singh, R. (2009). Temporal trends in estimates of reference evapotranspiration over India. Journal of Hydrologic Engineering, Vol. 14, Issue 5, 508–515.Search in Google Scholar

Birthal, P., Tajuddin, K. M., Negi, D., & Agarwal, S. (2014). Impact of Climate Change on Yields of Major Food Crops in India: Implications for Food Security. Agricultural Economics Research Review, Vol. 27, 145, DOI:10.5958/0974-0279.2014.00019.6.10.5958/0974-0279.2014.00019.6Open DOISearch in Google Scholar

Carleton,T. A. (2017). Crop-damaging temperatures increase suicide rates in India. Proceedings of the National Academy of Sciences of the United States of America, Vol. 114, Issue 33, 8746-8751, available at: https://doi.org/10.1073/pnas.1701354114.10.1073/pnas.1701354114556541728760983Open DOISearch in Google Scholar

European Commission. (2018). Patterns of Aridity. Joint Research Centre World Atlas of Desertification, available at: https://wad.jrc.ec.europa.eu/patternsaridity.Search in Google Scholar

Fick, S. E., & Hijmans, R. J. (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, Vol. 37, Issue 12, 4302-4315, https://doi.org/10.1002/joc.5086.10.1002/joc.5086Open DOISearch in Google Scholar

Goparaju, L., & Ahmad, F. (2019). Analyzing the risk related to Climate Change attributes and their impact, a step towards Climate-Smart Village (CSV): a geospatial approach to bring geoponics sustainability in India. Spatial Information Research, available at: https://doi.org/10.1007/s41324-019-00258-0.10.1007/s41324-019-00258-0Open DOISearch in Google Scholar

Guhathakurta, P., & Rajeevan, M. (2008). Trends in the rainfall pattern over India. International Journal of Climatology, Vol. 28, Issue 11, 1453–1469.Search in Google Scholar

James, A. J., Bahadur, A. V., & Verma, S. (2018). Climate Resilient Water Management: An operational framework from South Asia. Action on Climate Today Learning Paper, Acclimatise and Oxford Policy Management.Search in Google Scholar

Jimenez, D., & Ramirez-Villegas, J. (2018). Unlocking Big Data’s Potential to Strengthen Farmers’ Resilience: The Platform for Big Data in Agriculture. In: Ospina, A. V. Big Data for resilience storybook: Experiences integrating Big Data into resilience programming (pp. 97-108). Winnipeg: International Institute for Sustainable Development.Search in Google Scholar

Killeen, T. J., & Solorzano, L. A. (2008). Conservation strategies to mitigate impacts from climate change in Amazonia. Philosophical Transactions of the Royal Society of London. Series B Biological Sciences, Vol. 363, Issue 1498, 1881–1888. doi: 10.1098/rstb.2007.0018.10.1098/rstb.2007.0018237595118267917Open DOISearch in Google Scholar

Lang, D., Zheng, J., Shi, J., Liao, F., Ma, X., Wang, W., Chen, X., & Zhang, M. (2017). A comparative study of potential evapotranspiration estimation by eight methods with FAO Penman–Monteith method in southwestern China. Water, Vol. 9, Issue 10, 734, DOI: 10.3390/w9100734.10.3390/w9100734Open DOISearch in Google Scholar

Lewis, M. W. (2013). Remapping Poverty in India. GeoCurrents, available at: http://www.geocurrents.info/geonotes/remapping-poverty-in-india, accessed on 22 January 2019.Search in Google Scholar

Liu, Y., Ren, L., Yang, X., Ma, M., Yuan, F., & Jiang, S. (2015). Effects of precipitation and potential evaporation on actual evapotranspiration over the Laohahe basin, northern China. Proceedings of IAHS, Vol. 371, 173–179, available at: https://doi.org/10.5194/piahs-371-173-2015.10.5194/piahs-371-173-2015Open DOISearch in Google Scholar

Maliva, R., & Missimer, T. (2012). Arid Lands Water Evaluation and Management. Environmental Science and Engineering, DOI: 10.1007/978-3-642-29104-3_2.10.1007/978-3-642-29104-3_2Open DOISearch in Google Scholar

Mooley, D. A., & Parthasarathy, B. (1983). Variability of the Indian summer monsoon and tropical circulation features. Monthly Weather Review, Vol. 111, Issue 5, 967–968.Search in Google Scholar

Mooley, D. A., & Parthasarathy, B. (1984). Fluctuations in All-India summer monsoon rainfall during 1871–1978. Climatic Change, Vol. 6, Issue 3: 287–301, available at: https://doi.org/10.1007/BF00142477.10.1007/BF00142477Open DOISearch in Google Scholar

Rajeevan, M., Unnikrishnan, C. K, Jyoti, B., Niranjan, K., & Sreekala, P. (2012). Northeast Monsoon over India: Variability and Prediction. Meteorological Applications. Vol. 19 (2), 226 – 236. DOI: 10.1002/met.1322.10.1002/met.1322Open DOISearch in Google Scholar

Ramachandran, A., Praveen, D., Jaganathan, R., & Palanivelu, K. (2015). Projected and observed aridity and climate change in the east coast of south India under RCP 4.5. The Scientific World Journal, Vol. 2015, 11, available at: https://doi.org/10.1155/2015/169761.10.1155/2015/169761468180226771002Open DOISearch in Google Scholar

Reynolds, M., Kropff, M., Crossa, J., Koo, J., Kruseman, G., Molero Milan, A., Rutkoski, J., Schulthess, U., Balwinder-Singh, Sonder, K., Tonnang, H., & Vadez, V. (2018). Role of Modelling in International Crop Research: Overview and Some Case Studies. Agronomy, Vol. 8 (12), 291, available at: https://doi.org/10.3390/agronomy8120291.10.3390/agronomy8120291Open DOISearch in Google Scholar

Salem, B. B. (1989). Arid Zone Forestry: A Guide for Field Technicians (Fao Conservation Guide, 20). Rome, Italy: Food & Agriculture Org, available at: http://www.fao.org/docrep/t0122e/t0122e03.htm.Search in Google Scholar

Sivanappan, R. K., Technologies for water harvesting and soil moisture conservation in small watersheds for small-scale irrigation, India, available at: http://www.fao.org/3/w7314e/w7314e0q.htm#TopOfPage.Search in Google Scholar

Spinoni, J., Vogt, J., & Barbosa, P. (2015). European degree-day climatologies and trends for the period 1951–2011. International Journal of Climatology, Vol. 35, Issue 1, 25–36, available at: https://doi.org/10.1002/joc.3959.10.1002/joc.3959Open DOISearch in Google Scholar

Srinivasa Rao, Ch., Gopinath, K.A., Prasad, J.V.N.S., Kumar, P., & Singh, A.K. (2016). Climate resilient villages for sustainable food security in tropical India: concept, process, technologies, institutions, and impact. Advances in Agronomy, Vol. 140, 101–214, available at: http://dx.doi.org/10.1016/bs.agron.2016.06.003.10.1016/bs.agron.2016.06.003Open DOISearch in Google Scholar

Stefan, S., & Zhao, G. (2014). Mapping of rainfed and irrigated agriculture in India – data inventory and documentation. Technical report, GEOSHARE pilot – Crop Science Bonn, available at: https://mygeohub.org/publications/11/serve/1/17.Search in Google Scholar

Stephen, J. (2005). Aridity Indexes. In: Oliver, J. E. (eds). Encyclopedia of World Climatology. Encyclopedia of Earth Sciences Series. Dordrecht: Springer, available at: https://doi.org/10.1007/1-4020-3266-8_17.10.1007/1-4020-3266-8_17Open DOISearch in Google Scholar

Tewari, J. C., Ram, M., Roy, M., & Dagar, J. C. (2014). Livelihood Improvements and Climate Change Adaptations Through Agroforestry in Hot Arid Environments. In: Dagar, J., Singh, A., Arunachalam, A. (eds) Agroforestry Systems in India: Livelihood Security & Ecosystem Services. Advances in Agroforestry, Vol. 10, New Delhi: Springer, available at: https://doi.org/10.1007/978-81-322-1662-9_6.10.1007/978-81-322-1662-9_6Search in Google Scholar

Trabucco, A., & Zomer, R. (2019). Global Aridity Index and Potential Evapotranspiration Climate Database v2. CGIAR Consortium for Spatial Information (CGIAR-CSI), available at: https://cgiarcsi.community/2019/01/24/global-aridity-index-and-potential-evapotranspiration-climate-database-v2/.Search in Google Scholar

United Nations Educational, Scientific and Cultural Organization (UNESCO). (1979). Map of the World Distribution of Arid Regions: Explanatory Note. Paris, France: UNESCO.Search in Google Scholar

Wani, S. P., Pathak, P., Sreedevi, T. K., Singh, H. P., & Singh, P. (2003). Efficient management of rainwater for increased crop productivity and groundwater recharge in Asia. IWMI Books, Reports H032643, Colombo, Sri Lanka: International Water Management Institute.Search in Google Scholar

WorldClim-Global Climate Data (Version 2). (2016). available at: http://worldclim.org/version2.Search in Google Scholar

Zhao, G., & Siebert, S. (2015). Season-wise irrigated and rainfed crop areas for India around year 2005. MyGeoHUB. doi: 10.13019/M2CC71Search in Google Scholar

Zomer, R. J., Bossio, D. A., Trabucco, A., Yuanjie, L., Gupta, D. C., & Singh, V. P. (2007). Trees and Water: Smallholder Agroforestry on Irrigated Lands in Northern India. IWMI Research Report 122, Colombo, Sri Lanka: International Water Management Institute.Search in Google Scholar

Zomer, R. J., Trabucco, A., Bossio, D. A., & Verchot, L.V. (2008). Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture Ecosystems & Environment, Vol. 126 (1-2), 67-80, doi: 10.1016/j.agee.2008.01.014.10.1016/j.agee.2008.01.014Open DOISearch in Google Scholar

eISSN:
2451-3148
ISSN:
1224-5178
Language:
English