Open Access

Nachhaltige Intensivierung der landwirtschaftlichen Produktion: ein Überblick vier verschiedener Bodenzusätze


Cite

Ameloot, N., Graber, E.R., Verheijen, F.G.A. and S. De Neve (2013): Interactions between biochar stability and soil organisms: review and research needs. European Journal of Soil Science 64, 379–390.AmelootN.GraberE.R.VerheijenF.G.A.De NeveS.2013Interactions between biochar stability and soil organisms: review and research needsEuropean Journal of Soil Science6437939010.1111/ejss.12064Search in Google Scholar

Anderson, N.P., Hart, J.M., Sullivan, D.M., Horneck, D.A., Pirelli, G.J. and N.W. Christensen (2013): Applying lime to raise soil pH for crop production (Western Oregon). Extension Service, Oregon State University, Corvallis, Oregon, USA.AndersonN.P.HartJ.M.SullivanD.M.HorneckD.A.PirelliG.J.ChristensenN.W.2013Applying lime to raise soil pH for crop production (Western Oregon)Extension ServiceOregon State University, Corvallis, Oregon, USASearch in Google Scholar

Asai, H., Samson, B.K., Stephan, H.M., Songyikhang-suthor, K., Homma, K., Kiyono, Y., Inoue, Y., Shiraiwa, T. and T. Horie (2009): Biochar amendment techniques for upland rice production in Northern Laos. Field Crops Research 111, 81–84.AsaiH.SamsonB.K.StephanH.M.Songyikhang-suthorK.HommaK.KiyonoY.InoueY.ShiraiwaT.HorieT.2009Biochar amendment techniques for upland rice production in Northern LaosField Crops Research111818410.1016/j.fcr.2008.10.008Search in Google Scholar

Bailey, J.S. (1995): Liming and nitrogen efficiency: Some effects of increased calcium supply and increased soil pH on nitrogen recovery by perennial ryegrass. Communications in Soil Science and Plant Analysis 26, 1233–1246.BaileyJ.S.1995Liming and nitrogen efficiency: Some effects of increased calcium supply and increased soil pH on nitrogen recovery by perennial ryegrassCommunications in Soil Science and Plant Analysis261233124610.1080/00103629509369366Search in Google Scholar

Becher, H. (2001): Influence of long-term liming on aggregate stability of a loess-derived soil. International Agrophysics 15, 67–72.BecherH.2001Influence of long-term liming on aggregate stability of a loess-derived soilInternational Agrophysics156772Search in Google Scholar

Becker, B. (1997): Sustainability Assessment: A Review of Values, Concepts, and Methodological Approaches. Issues in Agriculture 10, The Consultative Group on International Agricultural Research (CGIAR), Washington, D.C., USA, pp. 63.BeckerB.1997Sustainability Assessment: A Review of Values, Concepts, and Methodological Approaches. Issues in Agriculture 10, The Consultative Group on International Agricultural Research (CGIAR)Washington, D.C., USA63Search in Google Scholar

Bender, S.F., Wagg, C. and M.G. van der Heijden (2016): An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology & Evolution 31, 440–452.BenderS.F.WaggC.van der HeijdenM.G.2016An underground revolution: biodiversity and soil ecological engineering for agricultural sustainabilityTrends in Ecology & Evolution3144045210.1016/j.tree.2016.02.01626993667Search in Google Scholar

Biasi, C., Lind, S.E., Pekkarinen, N.M., Huttunen, J.T., Shurpali, N.J., Hyvönen, N.P., Repo, M.E. and P.J. Martikainen (2008): Direct experimental evidence for the contribution of lime to CO2 release from managed peat soil. Soil Biology and Biochemistry 40, 2660–2669.BiasiC.LindS.E.PekkarinenN.M.HuttunenJ.T.ShurpaliN.J.HyvönenN.P.RepoM.E.MartikainenP.J.2008Direct experimental evidence for the contribution of lime to CO2 release from managed peat soilSoil Biology and Biochemistry402660266910.1016/j.soilbio.2008.07.011Search in Google Scholar

Cambi, M., Certini, G., Neri, F. and E. Marchi (2015): The impact of heavy traffic on forest soils: A review. Forest Ecology and Management338, 124–138.CambiM.CertiniG.NeriF.MarchiE.2015The impact of heavy traffic on forest soils: A review. Forest Ecology and Management33812413810.1016/j.foreco.2014.11.022Search in Google Scholar

Cayuela, M., Van Zwieten, L., Singh, B., Jeffery, S., Roig, A. and M. Sánchez-Monedero (2014): Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agriculture, Ecosystems & Environment 191, 5–16.CayuelaM.Van ZwietenL.SinghB.JefferyS.RoigA.Sánchez-MonederoM.2014Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysisAgriculture, Ecosystems & Environment19151610.1016/j.agee.2013.10.009Search in Google Scholar

Cayuela, M.L., Sánchez-Monedero, M.A., Roig, A., Hanley, K., Enders, A. and J. Lehmann (2013): Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Scientific Reports 3, 1732.CayuelaM.L.Sánchez-MonederoM.A.RoigA.HanleyK.EndersA.LehmannJ.2013Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions?Scientific Reports3173210.1038/srep01732363505723615819Search in Google Scholar

Chen, Q., Qi, L., Bi, Q., Dai, P., Sun, D., Sun, C., Liu, W., Lu, L., Ni, W. and X. Lin (2015): Comparative effects of 3,4-dimethylpyrazole phosphate (DMPP) and dicyandiamide (DCD) on ammonia-oxidizing bacteria and archaea in a vegetable soil. Applied Microbiology and Biotechnology 99, 477–487.ChenQ.QiL.BiQ.DaiP.SunD.SunC.LiuW.LuL.NiW.LinX.2015Comparative effects of 3,4-dimethylpyrazole phosphate (DMPP) and dicyandiamide (DCD) on ammonia-oxidizing bacteria and archaea in a vegetable soilApplied Microbiology and Biotechnology9947748710.1007/s00253-014-6026-725172135Search in Google Scholar

Dahlin, C. and I. Rodríguez-Iturbe, (2016): Environmental impacts of food trade via resource use and greenhouse gas emissions. Environmental Research Letters 11, 035012.DahlinC.Rodríguez-IturbeI.2016Environmental impacts of food trade via resource use and greenhouse gas emissionsEnvironmental Research Letters1103501210.1088/1748-9326/11/3/035012Search in Google Scholar

Eroglu, N., Emekci, M. and C.G. Athanassiou (2017): Applications of natural zeolites on agriculture and food production. Journal of the Science of Food and Agriculture 97, 3487–3499.ErogluN.EmekciM.AthanassiouC.G.2017Applications of natural zeolites on agriculture and food productionJournal of the Science of Food and Agriculture973487349910.1002/jsfa.8312Search in Google Scholar

Fageria, N. and V. Baligar (2008): Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production. Advances in Agronomy 99, 345–399.FageriaN.BaligarV.2008Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop productionAdvances in Agronomy9934539910.1016/S0065-2113(08)00407-0Search in Google Scholar

FAO (2013): LIBERATON. LInking farmland Biodiversity to Ecosystem seRvices for effective eco-functional intensificATION, Annotated Bibliography on Ecological Intensification. Collaborative Project, Grant Agreement No.: 311781.FAO2013LIBERATON. Linking farmland Biodiversity to Ecosystem seRvices for effective eco-functional intensificATION, Annotated Bibliography on Ecological Intensification. Collaborative Project, Grant Agreement No.: 311781Search in Google Scholar

FAO (2015): FAOSTAT. Food and Agriculture Organization of the United Nations, Rome, Italy.FAO2015FAOSTATFood and Agriculture Organization of the United NationsRome, ItalySearch in Google Scholar

Ferretti, G., Keiblinger, K.M., Di Giuseppe, D., Faccini, B., Colombani, N., Zechmeister-Boltenstern, S., Coltorti, M. and M. Mastrocicco (2018): Short-term response of soil microbial biomass to different chabazite zeolite amendments. Pedosphere 28, 277–287.FerrettiG.KeiblingerK.M.Di GiuseppeD.FacciniB.ColombaniN.Zechmeister-BoltensternS.ColtortiM.MastrociccoM.2018Short-term response of soil microbial biomass to different chabazite zeolite amendmentsPedosphere2827728710.1016/S1002-0160(18)60016-5Search in Google Scholar

Ferretti, G., Keiblinger, K.M., Zimmermann, M., Di Giuseppe, D., Faccini, B., Colombani, N., Mentler, A., Zechmeister-Boltenstern, S., Coltorti, M. and M. Mastrocicco (2017): High resolution short-term investigation of soil CO2 N2O, NOx and NH3 emissions after different chabazite zeolite amendments. Applied Soil Ecology 119, 138–144.FerrettiG.KeiblingerK.M.ZimmermannM.Di GiuseppeD.FacciniB.ColombaniN.MentlerA.Zechmeister-BoltensternS.ColtortiM.MastrociccoM.2017High resolution short-term investigation of soil CO2 N2O, NOx and NH3 emissions after different chabazite zeolite amendmentsApplied Soil Ecology11913814410.1016/j.apsoil.2017.06.004Search in Google Scholar

Fornara, D.A., Steinbeiss, S., McNamara, N.P., Gleixner, G., Oakley, S., Poulton, P.R., MacDonald, A.J. and R.D. Bardgett (2011): Increases in soil organic carbon sequestration can reduce the global warming potential of long-term liming to permanent grassland. Global Change Biology 17, 1925–1934.FornaraD.A.SteinbeissS.McNamaraN.P.GleixnerG.OakleyS.PoultonP.R.MacDonaldA.J.BardgettR.D.2011Increases in soil organic carbon sequestration can reduce the global warming potential of long-term liming to permanent grasslandGlobal Change Biology171925193410.1111/j.1365-2486.2010.02328.xSearch in Google Scholar

Fuentes, J.P., Bezdicek, D.F., Flury, M., Albrecht, S. and J.L. Smith (2006): Microbial activity affected by lime in a long-term no-till soil. Soil and Tillage Research 88, 123–131.FuentesJ.P.BezdicekD.F.FluryM.AlbrechtS.SmithJ.L.2006Microbial activity affected by lime in a long-term no-till soilSoil and Tillage Research8812313110.1016/j.still.2005.05.001Search in Google Scholar

Frey, B., Kremer, J., Rüdt, A., Sciacca, S., Matthies, D. and P. Lüscher (2009): Compaction of forest soils with heavy logging machinery affects soil bacterial community structure. European Journal of Soil Biology 45, 312–320.FreyB.KremerJ.RüdtA.SciaccaS.MatthiesD.LüscherP.2009Compaction of forest soils with heavy logging machinery affects soil bacterial community structureEuropean Journal of Soil Biology4531232010.1016/j.ejsobi.2009.05.006Search in Google Scholar

Garnett, T. and C. Godfray (2012): Sustainable intensification in agriculture. Navigating a course through competing food system priorities. Food Climate Research Network and the Oxford Martin Programme on the Future of Food, University of Oxford, UK.GarnettT.GodfrayC.2012Sustainable intensification in agricultureNavigating a course through competing food system priorities. Food Climate Research Network and the Oxford Martin Programme on the Future of FoodUniversity of Oxford, UKSearch in Google Scholar

Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z., Freney, J.R., Martinelli, L.A., Seitzinger, S.P. and M.A. Sutton (2008): Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 320, 889–892.GallowayJ.N.TownsendA.R.ErismanJ.W.BekundaM.CaiZ.FreneyJ.R.MartinelliL.A.SeitzingerS.P.SuttonM.A.2008Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential SolutionsScience32088989210.1126/science.113667418487183Search in Google Scholar

Goulding, K.W.T. (2016): Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use and Management 32, 390–399.GouldingK.W.T.2016Soil acidification and the importance of liming agricultural soils with particular reference to the United KingdomSoil Use and Management3239039910.1111/sum.12270503289727708478Search in Google Scholar

Harter, J., Krause, H.-M., Schuettler, S., Ruser, R., Fromme, M., Scholten, T., Kappler, A. and S. Behrens (2014): Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. The ISME Journal 8, 660–674.HarterJ.KrauseH.-M.SchuettlerS.RuserR.FrommeM.ScholtenT.KapplerA.BehrensS.2014Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial communityThe ISME Journal866067410.1038/ismej.2013.160393030624067258Search in Google Scholar

Hartmann, M., Niklaus, P.A., Zimmermann, S., Schmutz, S., Kremer, J., Abarenkov, K., Lüscher, P., Widmer, F. and B. Frey (2014): Resistance and resilience of the forest soil microbiome to logging-associated compaction. The ISME Journal 8, 226–244.HartmannM.NiklausP.A.ZimmermannS.SchmutzS.KremerJ.AbarenkovK.LüscherP.WidmerF.FreyB.2014Resistance and resilience of the forest soil microbiome to logging-associated compactionThe ISME Journal822624410.1038/ismej.2013.141386901824030594Search in Google Scholar

Haynes, R. and R. Swift (1988): Effects of lime and phosphate additions on changes in enzyme activities, microbial biomass and levels of extractable nitrogen, sulphur and phosphorus in an acid soil. Biology and Fertility of Soils 6, 153–158.HaynesR.SwiftR.1988Effects of lime and phosphate additions on changes in enzyme activities, microbial biomass and levels of extractable nitrogen, sulphur and phosphorus in an acid soilBiology and Fertility of Soils615315810.1007/BF00257666Search in Google Scholar

Haynes, W.M. (Ed.) (2013): CRC Handbook of Chemistry and Physics. 94th ed., CRC Press, Boca Raton, FL, USA.HaynesW.M.2013CRC Handbook of Chemistry and Physics94th edCRC PressBoca Raton, FL, USASearch in Google Scholar

Holland, J.E., Bennett, A.E., Newton, A.C., White, P.J., McKenzie, B.M., George, T.S., Pakeman, R.J., Bailey, J.S., Fornara, D.A. and R.C. Hayes (2018): Liming impacts on soils, crops and biodiversity in the UK: A review. Science of The Total Environment 610–611, 316–332.HollandJ.E.BennettA.E.NewtonA.C.WhiteP.J.McKenzieB.M.GeorgeT.S.PakemanR.J.BaileyJ.S.FornaraD.A.HayesR.C.2018Liming impacts on soils, crops and biodiversity in the UK: A reviewScience of The Total Environment610–61131633210.1016/j.scitotenv.2017.08.02028806549Search in Google Scholar

Hu, Y., Schraml, M., von Tucher, S., Li, F. and U. Schmidhalter (2014): Influence of nitrification inhibitors on yields of arable crops: A meta-analysis of recent studies in Germany. International Journal of Plant Production 8, 33–50.HuY.SchramlM.von TucherS.Li, F. and U. Schmidhalter2014Influence of nitrification inhibitors on yields of arable crops: A meta-analysis of recent studies in GermanyInternational Journal of Plant Production83350Search in Google Scholar

Jakkula, V.S. and S.P. Wan (2018): Zeolites: Potential soil amendments for improving nutrient and water use efficiency and agriculture productivity. Scientific Reviews & Chemical Communications 8, 119.JakkulaV.S.WanS.P.2018Zeolites: Potential soil amendments for improving nutrient and water use efficiency and agriculture productivityScientific Reviews & Chemical Communications8119Search in Google Scholar

Jeffery, S., Verheijen, F.G.A., Kammann, C. and D. Abalos (2016): Biochar effects on methane emissions from soils: A meta-analysis. Soil Biology and Biochemistry 101, 251–258.JefferyS.VerheijenF.G.A.KammannC.AbalosD.2016Biochar effects on methane emissions from soils: A meta-analysisSoil Biology and Biochemistry10125125810.1016/j.soilbio.2016.07.021Search in Google Scholar

Jeffery, S., Abalos, D., Prodana, M., Bastos, A.C., van Groenigen J.W., Hungate, B.A. and F. Verheijen (2017a): Biochar boosts tropical but not temperate crop yields Environmental Research Letters 12, 053001.JefferyS.AbalosD.ProdanaM.BastosA.C.van GroenigenJ.W.HungateB.A.VerheijenF.2017aBiochar boosts tropical but not temperate crop yields Environmental Research Letters1205300110.1088/1748-9326/aa67bdSearch in Google Scholar

Jeffery, S.L., Memelink, I., Hodgson, E., Jones, S., van de Voorde, T.F.J., Bezemer, T.M., Mommer, L. and J.W. van Groenigen (2017b): Initial biochar effects on plant productivity derive from N fertilization. Plant and Soil 415, 435–448.JefferyS.L.MemelinkI.HodgsonE.JonesS.van de VoordeT.F.J.BezemerT.M.MommerL.van GroenigenJ.W.2017bInitial biochar effects on plant productivity derive from N fertilizationPlant and Soil41543544810.1007/s11104-016-3171-zSearch in Google Scholar

Jha, B. and D.N. Singh (2016): Basics of Zeolites. In: Jha, B. and D.N. Singh (Ed.): Fly Ash Zeolites. Innovations, Applications, Directions. Springer Science+Busines Media, Singapore, pp. 5–31.JhaB.SinghD.N.2016Basics of ZeolitesJhaB.SinghD.N.Fly Ash ZeolitesInnovations, Applications, Directions. Springer Science+Busines Media, Singapore53110.1007/978-981-10-1404-8_2Search in Google Scholar

Keiblinger, K.M., Hall, E.K., Wanek, W., Szukics, U., Hämmerle, I., Ellersdorfer, G., Böck, S., Strauss, J., Sterflinger, K., Richter, A. and S. Zechmeister-Boltenstern (2010): The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency. FEMS Microbiology Ecology 73, 430–440.KeiblingerK.M.HallE.K.WanekW.SzukicsU.HämmerleI.EllersdorferG.BöckS.StraussJ.SterflingerK.RichterA.Zechmeister-BoltensternS.2010The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiencyFEMS Microbiology Ecology7343044010.1111/j.1574-6941.2010.00912.x20550579Search in Google Scholar

Keiblinger, K.M., Bauer, L.M., Deltedesco, E., Holawe, F., Unterfrauner, H., Zehetner, F. and R. Peticzka (2016): Quicklime application instantly increases soil aggregate stability. International Agrophysics 30, 123–128.KeiblingerK.M.BauerL.M.DeltedescoE.HolaweF.UnterfraunerH.ZehetnerF.PeticzkaR.2016Quicklime application instantly increases soil aggregate stabilityInternational Agrophysics3012312810.1515/intag-2015-0068Search in Google Scholar

Keiblinger, K.M., Liu, D., Mentler, A., Zehetner, F. and S. Zechmeister-Boltenstern (2015): Biochar application reduces protein sorption in soil. Organic Geochemistry 87, 21–24.KeiblingerK.M.LiuD.MentlerA.ZehetnerF.Zechmeister-BoltensternS.2015Biochar application reduces protein sorption in soilOrganic Geochemistry87212410.1016/j.orggeochem.2015.06.005Search in Google Scholar

Keiblinger, K.M., Zehetner, F., Mentler, A. and S. Zechmeister-Boltenstern (2018): Biochar application increases sorption of nitrification inhibitor 3,4-dimethylpyrazole phosphate in soil. Environmental Science and Pollution Research 25, 11173–11177.KeiblingerK.M.ZehetnerF.MentlerA.Zechmeister-BoltensternS.2018Biochar application increases sorption of nitrification inhibitor 3,4-dimethylpyrazole phosphate in soilEnvironmental Science and Pollution Research25111731117710.1007/s11356-018-1658-2589566329520552Search in Google Scholar

Kemmitt, S.J., Wright, D., Goulding, K.W.T. and D.L. Jones (2006): pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biology and Biochemistry 38, 898–911.KemmittS.J.WrightD.GouldingK.W.T.JonesD.L.2006pH regulation of carbon and nitrogen dynamics in two agricultural soilsSoil Biology and Biochemistry3889891110.1016/j.soilbio.2005.08.006Search in Google Scholar

Kunhikrishnan, A., Thangarajan, R., Bolan, N.S., Xu, Y., Mandal, S., Gleeson, D.B., Seshadri, B., Zaman, M., Barton, L., Tang, C., Luo, J., Dalal, R., Ding, W., Kirkham, M.B. and R. Naidu (2016): Functional Relationships of Soil Acidification, Liming, and Greenhouse Gas Flux. In: Sparks, D.L. (Ed.): Advances in Agronomy 139, Elsevier, pp. 3–55.KunhikrishnanA.ThangarajanR.BolanN.S.XuY.MandalS.GleesonD.B.SeshadriB.ZamanM.BartonL.TangC.LuoJ.DalalR.DingW.KirkhamM.B.NaiduR.2016Functional Relationships of Soil Acidification, Liming, and Greenhouse Gas FluxSparksD.L.Advances in Agronomy 139Elsevier35510.1016/bs.agron.2016.05.001Search in Google Scholar

Lehmann, J., Pereira da Silva, J., Steiner, C., Nehls, T., Zech, W. and B. Glaser (2003): Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil 249, 343–357.LehmannJ.Pereira da SilvaJ.SteinerC.NehlsT.ZechW.GlaserB.2003Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendmentsPlant and Soil24934335710.1023/A:1022833116184Search in Google Scholar

Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C. and D. Crowley (2011): Biochar effects on soil biota–a review. Soil biology and biochemistry 43, 1812–1836.LehmannJ.RilligM.C.ThiesJ.MasielloC.A.HockadayW.C.CrowleyD.2011Biochar effects on soil biota–a reviewSoil biology and biochemistry431812183610.1016/j.soilbio.2011.04.022Search in Google Scholar

Major, J., Rondon, M., Molina, D., Riha, S.J. and J. Lehmann (2010): Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil 333, 117–128.MajorJ.RondonM.MolinaD.RihaS.J.LehmannJ.2010Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisolPlant and Soil33311712810.1007/s11104-010-0327-0Search in Google Scholar

Marsden, K.A., Marín-Martínez, A.J., Vallejo, A., Hill, P.W., Jones, D.L. and D.R. Chadwick (2016): The mobility of nitrification inhibitors under simulated ruminant urine deposition and rainfall: a comparison between DCD and DMPP. Biology and Fertility of Soils 52, 491–503.MarsdenK.A.Marín-MartínezA.J.VallejoA.HillP.W.JonesD.L.ChadwickD.R.2016The mobility of nitrification inhibitors under simulated ruminant urine deposition and rainfall: a comparison between DCD and DMPPBiology and Fertility of Soils5249150310.1007/s00374-016-1092-xSearch in Google Scholar

Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and B.J. Chambers (2014): An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters 9, 115006.MisselbrookT.H.CardenasL.M.CampV.ThormanR.E.WilliamsJ.R.RollettA.J.ChambersB.J.2014An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agricultureEnvironmental Research Letters911500610.1088/1748-9326/9/11/115006Search in Google Scholar

Muhlbachova, G. and T. Simon (2003): Effects of zeolite amendment on microbial biomass and respiratory activity in heavy metal contaminated soils. Plant, Soil and Environment 49, 536–541.MuhlbachovaG.SimonT.2003Effects of zeolite amendment on microbial biomass and respiratory activity in heavy metal contaminated soilsPlant, Soil and Environment4953654110.17221/4190-PSESearch in Google Scholar

Mumpton, F.A. (1985): Using Zeolites in Agriculture Chapter VIII. In: Innovative biological technologies for lesser developed countries. Congress of the United States, Office of Technology Assessment, Washington D.C., pp. 127–158.MumptonF.A.1985Using Zeolites in Agriculture Chapter VIIIInnovative biological technologies for lesser developed countries. Congress of the United States, Office of Technology AssessmentWashington D.C127158Search in Google Scholar

The Australian Dairy Farmer (2013): Nitrification inhibitor withdrawn from New Zealand market, (newspaper), online edition 04 Feb 2013. http://adf.farmonline.com.au/news/magazine/feed/pastures/nitrification-inhibitor-withdrawn-from-nz-market/2645290.aspx Accessed on 13 June 2018.The Australian Dairy Farmer2013Nitrification inhibitor withdrawn from New Zealand market, (newspaper), online edition 04 Feb 2013http://adf.farmonline.com.au/news/magazine/feed/pastures/nitrification-inhibitor-withdrawn-from-nz-market/2645290.aspxAccessed on 13 June 2018Search in Google Scholar

Nguyen, B.T., Lehmann, J., Hockaday, W.C., Joseph, S. and C.A. Masiello (2010): Temperature sensitivity of black carbon decomposition and oxidation. Environmental Science & Technology 44, 3324–3331.NguyenB.T.LehmannJ.HockadayW.C.JosephS.MasielloC.A.2010Temperature sensitivity of black carbon decomposition and oxidationEnvironmental Science & Technology443324333110.1021/es903016y20384335Search in Google Scholar

Nielsen, U.N., Ayres, E., Wall, D.H. and R.D. Bardgett (2011): Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity–function relationships. European Journal of Soil Science 62, 105–116.NielsenU.N.AyresE.WallD.H.BardgettR.D.2011Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity–function relationshipsEuropean Journal of Soil Science6210511610.1111/j.1365-2389.2010.01314.xSearch in Google Scholar

Pretty, J.N. (1997): The sustainable intensification of agriculture. Natural Resources Forum 21, 247–256.PrettyJ.N.1997The sustainable intensification of agricultureNatural Resources Forum2124725610.1111/j.1477-8947.1997.tb00699.xSearch in Google Scholar

Prommer, J., Wanek, W., Hofhansl, F., Trojan, D., Offre, P., Urich, T., Schleper, C., Sassmann, S., Kitzler, B., Soja, G. and R.C. Hood-Nowotny (2014): Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial. Plos One 9, e86388.PrommerJ.WanekW.HofhanslF.TrojanD.OffreP.UrichT.SchleperC.SassmannS.KitzlerB.SojaG.Hood-NowotnyR.C.2014Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trialPlos One9e8638810.1371/journal.pone.0086388390740524497947Search in Google Scholar

Prosser, J.I. and G.W. Nicol (2012): Archaeal and bacterial ammonia-oxidisers in soil: The quest for niche specialisation and differentiation. Trends in microbiology 20, 523–531.ProsserJ.I.NicolG.W.2012Archaeal and bacterial ammonia-oxidisers in soil: The quest for niche specialisation and differentiationTrends in microbiology2052353110.1016/j.tim.2012.08.00122959489Search in Google Scholar

Puschenreiter, M. and O. Horak (2003): Slow-release zeolite-bound zinc and copper fertilizers affect cadmium concentration in wheat and spinach. Communications in Soil Science and Plant Analysis 34, 31–40.PuschenreiterM.HorakO.2003Slow-release zeolite-bound zinc and copper fertilizers affect cadmium concentration in wheat and spinachCommunications in Soil Science and Plant Analysis34314010.1081/CSS-120017413Search in Google Scholar

Quin, P., Cowie, A., Flavel, R., Keen, B., Macdonald, L., Morris, S., Singh, B., Young, I. and L. Van Zwieten (2014): Oil mallee biochar improves soil structural properties—a study with x-ray micro-CT. Agriculture, Ecosystems & Environment 191, 142–149.QuinP.CowieA.FlavelR.KeenB.MacdonaldL.MorrisS.SinghB.YoungI.and L. Van Zwieten2014Oil mallee biochar improves soil structural properties—a study with x-ray micro-CTAgriculture, Ecosystems & Environment19114214910.1016/j.agee.2014.03.022Search in Google Scholar

Ramesh, K. and D.D. Reddy (2011): Zeolites and Their Potential Uses in Agriculture. Advances in Agronomy 113, 219–241.RameshK.ReddyD.D.2011Zeolites and Their Potential Uses in AgricultureAdvances in Agronomy11321924110.1016/B978-0-12-386473-4.00004-XSearch in Google Scholar

Sánchez-García, M., Roig, A., Sánchez-Monedero, M.A. and M.L. Cayuela (2014): Biochar increases soil N2O emissions produced by nitrification-mediated pathways. Frontiers in Environmental Science 2, 1–10.Sánchez-GarcíaM.RoigA.Sánchez-MonederoM.A.CayuelaM.L.2014Biochar increases soil N2O emissions produced by nitrification-mediated pathwaysFrontiers in Environmental Science2110Search in Google Scholar

Schiefer, J., Lair, GJ. and W.E.H. Blum (2016): Potential and limits of land and soil for sustainable intensification of European agriculture. Agriculture, Ecosystems & Environment 230, 283–293.SchieferJ.LairGJ.BlumW.E.H.2016Potential and limits of land and soil for sustainable intensification of European agricultureAgriculture, Ecosystems & Environment23028329310.1016/j.agee.2016.06.021Search in Google Scholar

Schimmelpfennig, S., Müller, C., Grünhage, L., Koch, C. and C. Kammann (2014): Biochar, hydrochar and uncarbonized feedstock application to permanent grassland—Effects on greenhouse gas emissions and plant growth. Agriculture, Ecosystems & Environment 191, 39–52.SchimmelpfennigS.MüllerC.GrünhageL.KochC.KammannC.2014Biochar, hydrochar and uncarbonized feedstock application to permanent grassland—Effects on greenhouse gas emissions and plant growthAgriculture, Ecosystems & Environment191395210.1016/j.agee.2014.03.027Search in Google Scholar

Smith, K.A., Goins, L.E. and T.J. Logan (1998): Effect of Calcium Oxide Dose on Thermal Reactions, Lime Speciation, and Physical Properties of Alkaline Stabilized Biosolids. Water Environment Research 70, 224–230.SmithK.A.GoinsL.E.LoganT.J.1998Effect of Calcium Oxide Dose on Thermal Reactions, Lime Speciation, and Physical Properties of Alkaline Stabilized BiosolidsWater Environment Research7022423010.2175/106143098X127071Search in Google Scholar

Soja, G., Wimmer, B., Rosner, F., Faber, F., Dersch, G., von Chamier, J., Pardeller, G., Ameur, D., Keiblinger, K. and F. Zehetner (2018): Compost and biochar interactions with copper immobilisation in copper-enriched vineyard soils. Applied Geochemistry 88, 40–48.SojaG.WimmerB.RosnerF.FaberF.DerschG.von ChamierJ.PardellerG.AmeurD.KeiblingerK.ZehetnerF.2018Compost and biochar interactions with copper immobilisation in copper-enriched vineyard soilsApplied Geochemistry88404810.1016/j.apgeochem.2017.06.004Search in Google Scholar

Sommer, S.G. and A.K. Ersbøll (1996): Effect of air flow rate, lime amendments, and chemical soil properties on the volatilization of ammonia from fertilizers applied to sandy soils. Biology and Fertility of Soils 21, 53–60.SommerS.G.and A.K. Ersbøll1996Effect of air flow rate, lime amendments, and chemical soil properties on the volatilization of ammonia from fertilizers applied to sandy soilsBiology and Fertility of Soils21536010.1007/BF00335993Search in Google Scholar

Steinbeiss, S., Gleixner, G. and M. Antonietti (2009): Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biology and Biochemistry 41, 1301–1310.SteinbeissS.GleixnerG.AntoniettiM.2009Effect of biochar amendment on soil carbon balance and soil microbial activitySoil Biology and Biochemistry411301131010.1016/j.soilbio.2009.03.016Search in Google Scholar

Tian, D. and S. Niu (2015): A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters 10, 024019.TianD.NiuS.2015A global analysis of soil acidification caused by nitrogen additionEnvironmental Research Letters1002401910.1088/1748-9326/10/2/024019Search in Google Scholar

Subbarao, G.V., Yoshihashi, T., Worthington, M., Nakahara, K., Ando, Y., Sahrawat, K.L., Rao, I.M., Lata, J.-C., Kishii, M. and H.-J. Braun (2015): Suppression of soil nitrification by plants. Plant Science 233, 155–164.SubbaraoG.V.YoshihashiT.WorthingtonM.NakaharaK.AndoY.SahrawatK.L.RaoI.M.LataJ.-C.KishiiM.BraunH.-J.2015Suppression of soil nitrification by plantsPlant Science23315516410.1016/j.plantsci.2015.01.01225711823Search in Google Scholar

Torma, S., Vilcek, J., Adamisin, P., Huttmanova, E. and O. Hronec (2014): Influence of natural zeolite on nitrogen dynamics in soil. Turkish Journal of Agriculture and Forestry 38, 739–744.TormaS.VilcekJ.AdamisinP.HuttmanovaE.HronecO.2014Influence of natural zeolite on nitrogen dynamics in soilTurkish Journal of Agriculture and Forestry3873974410.3906/tar-1311-13Search in Google Scholar

Tsiafouli, M.A., Thébault, E., Sgardelis, S.P., de Ruiter, P.C., van der Putten, W.H., Birkhofer, K., Hemerik, L., de Vries, F.T., Bardgett, R.D., Brady, M.V., Bjornlund, L., Jørgensen, H.B., Christensen, S., Hertefeldt, T.D., Hotes, S., Gera Hol, W.H., Frouz, J., Liiri, M., Mortimer, S.R., Setälä, H., Tzanopoulos, J., Uteseny, K., Pižl, V., Stary, J., Wolters, V. and K. Hedlund (2015): Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology 21, 973–985.TsiafouliM.A.ThébaultE.SgardelisS.P.de RuiterP.C.van der PuttenW.H.BirkhoferK.HemerikL.de VriesF.T.BardgettR.D.BradyM.V.BjornlundL.JørgensenH.B.ChristensenS.HertefeldtT.D.HotesS.Gera HolW.H.FrouzJ.LiiriM.MortimerS.R.SetäläH.TzanopoulosJ.UtesenyK.PižlV.StaryJ.WoltersV.HedlundK.2015Intensive agriculture reduces soil biodiversity across EuropeGlobal Change Biology2197398510.1111/gcb.1275225242445Search in Google Scholar

Tuck, S.L., Winqvist, C., Mota, F., Ahnström, J., Turnbull, L.A. and J. Bengtsson (2014): Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. Journal of Applied Ecology 51, 746–755.TuckS.L.WinqvistC.MotaF.AhnströmJ.TurnbullL.A.BengtssonJ.2014Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysisJournal of Applied Ecology5174675510.1111/1365-2664.12219429950325653457Search in Google Scholar

United Nations, Department of Economic and Social Affairs (UN DESA), Population Division (2015): World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP.241.United Nations, Department of Economic and Social Affairs (UN DESA), Population Division2015World Population Prospects: The 2015 Revision, Key Findings and Advance TablesWorking Paper No. ESA/P/WP.241Search in Google Scholar

Vaccari, F.P., Baronti, S., Lugato, E., Genesio, L., Castaldi, S., Fornasier, F. and F. Miglietta (2011): Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy 34, 231–238.VaccariF.P.BarontiS.LugatoE.GenesioL.CastaldiS.FornasierF.MigliettaF.2011Biochar as a strategy to sequester carbon and increase yield in durum wheatEuropean Journal of Agronomy3423123810.1016/j.eja.2011.01.006Search in Google Scholar

Van Zwieten, L., Kammann, C., Cayuela, M., Singh, B.P., Joseph, S., Kimber, S., Donne, S., Clough, T. and K. Spokas (2015): Biochar effects on nitrous oxide and methane emissions from soil. Biochar for Environmental Management: Science, Technology and Implementation. 2nd ed., Routledge, New York, USA.Van ZwietenL.KammannC.CayuelaM.SinghB.P.JosephS.KimberS.DonneS.CloughT.SpokasK.2015Biochar effects on nitrous oxide and methane emissions from soilBiochar for Environmental Management: Science Technology and Implementation2nd edRoutledgeNew York, USASearch in Google Scholar

Van Zwieten, L., Singh, B.P., Kimber, S.W.L., Murphy, D.V., Macdonald, L.M., Rust, J. and S. Morris (2014): An incubation study investigating the mechanisms that impact N2O flux from soil following biochar application. Agriculture, Ecosystems & Environment 191, 53–62.Van ZwietenL.SinghB.P.KimberS.W.L.MurphyD.V.MacdonaldL.M.RustJ.MorrisS.2014An incubation study investigating the mechanisms that impact N2O flux from soil following biochar applicationAgriculture, Ecosystems & Environment191536210.1016/j.agee.2014.02.030Search in Google Scholar

Wachendorf, C. (2015): Effects of liming and mineral N on initial decomposition of soil organic matter and post harvest root residues of poplar. Geoderma 259–260, 243–250.WachendorfC.2015Effects of liming and mineral N on initial decomposition of soil organic matter and post harvest root residues of poplarGeoderma259–26024325010.1016/j.geoderma.2015.06.013Search in Google Scholar

Wang, C., Lu, H., Dong, D., Deng, H., Strong, P., Wang, H. and W. Wu (2013): Insight into the effects of biochar on manure composting: Evidence supporting the relationship between N2O emission and denitrifying community. Environmental Science & Technology 47, 7341–7349.WangC.LuH.DongD.DengH.StrongP.WangH.WuW.2013Insight into the effects of biochar on manure composting: Evidence supporting the relationship between N2O emission and denitrifying communityEnvironmental Science & Technology477341734910.1021/es305293h23745957Search in Google Scholar

Weiske, A., Benckiser, G., Herbert, T. and J.C.G. Ottow (2001): Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments, Biology and Fertility of Soils 34, 109–117.WeiskeA.BenckiserG.HerbertT.OttowJ.C.G.2001Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experimentsBiology and Fertility of Soils3410911710.1007/s003740100386Search in Google Scholar

Whitman, T. and J. Lehmann (2009): Biochar—One way forward for soil carbon in offset mechanisms in Africa. Environmental Science and Policy 12, 1024–1027.WhitmanT.LehmannJ.2009Biochar—One way forward for soil carbon in offset mechanisms in AfricaEnvironmental Science and Policy121024102710.1016/j.envsci.2009.07.013Search in Google Scholar

Yang, M., Fang, Y., Sun, D. and Y. Shi (2016): Efficiency of two nitrification inhibitors (dicyandiamide and 3, 4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity: a meta-analysis. Scientific Reports 6, 22075.YangM.FangY.SunD.ShiY.2016Efficiency of two nitrification inhibitors (dicyandiamide and 3, 4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity: a meta-analysisScientific Reports62207510.1038/srep22075476326426902689Search in Google Scholar

Zerulla, W., Barth, T., Dressel, J., Erhardt, K., Horchler von Locquenghien, K., Pasda, G., Rädle, M., and A. Wissemeier (2001): 3,4-Dimethylpyrazole phosphate (DMPP)-a new nitrification inhibitor for agriculture and horticulture. Biology and Fertility of Soils 34, 79–84.ZerullaW.BarthT.DresselJ.ErhardtK.Horchler von LocquenghienK.PasdaG.RädleM.WissemeierA.20013,4-Dimethylpyrazole phosphate (DMPP)-a new nitrification inhibitor for agriculture and horticultureBiology and Fertility of Soils34798410.1007/s003740100380Search in Google Scholar

Zornoza, R., Moreno-Barriga, F., Acosta, J.A., Muñoz, M.A. and A. Faz (2016): Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere 144, 122–130.ZornozaR.Moreno-BarrigaF.AcostaJ.A.MuñozM.A.FazA.2016Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendmentsChemosphere14412213010.1016/j.chemosphere.2015.08.04626347934Search in Google Scholar

eISSN:
0006-5471
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Ecology, other