Open Access

Association of Glutathione-S-Transferase (GSTM1 and GSTT1) and FTO Gene Polymorphisms with Type 2 Diabetes Mellitus Cases in Northern India


Cite

1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care. 2004; 27(5): 1047-1053.10.2337/diacare.27.5.104715111519Search in Google Scholar

2. Gupta V, Khadgawat R, Saraswathy KN, Sachdeva MP, Kalla AK. Emergence of TCF7L2 as a most promising gene in predisposition of diabetes type II. Int J Hum Genet. 2008; 8(1-2): 199-215.10.1080/09723757.2008.11886031Search in Google Scholar

3. Das SK. Genetic epidemiology of adult onset T2Din Asian Indian population: Past, present and future. Int J Hum Genet. 2006; 6(1): 1-13.10.1080/09723757.2006.11885941Search in Google Scholar

4. Opara EC. Oxidative stress, micronutrients, diabetes mellitus and its complications. J R Soc Promot Health. 2002; 122(1): 28-34.10.1177/14664240021220011211989140Search in Google Scholar

5. Friedly LE, Philipson LH. Oxidative reactive species in cell injury: Mechanism in diabetes mellitus and therapeutic approaches. Ann N Y Acad Sci 2005; 1066: 136-151.10.1196/annals.1363.01916533924Search in Google Scholar

6. Bekris LM, Shephard C, Peterson J, Hoehna B, Van Yserloo E, Rutledge F, et al. Glutathionestransferase M1 and T1 polymorphisms and associations with type 1 diabetes age-at-onset. Autoimmunity. 2005; 38(8): 567-575.10.1080/0891693050040723816390810Search in Google Scholar

7. Amer MA, Ghattas MH, Abo-ElMatty DM, Abou-El-Ela SH. Influence of glutathione Stransferase polymorphisms on type-2 diabetes mellitus risk. Genet Mol Res. 2011; 10(4): 3722-3730.10.4238/2011.October.31.1422058002Search in Google Scholar

8. Ramprasath T, Senthil Murugan P, Prabakaran AD, Gomathi P, Rathinavel A, Selvam GS. Potential risk modifications of GSTT1, GSTM1 and GSTP1 (glutathione-S transferase) variants and their association to CAD in patients with type-2 diabetes. Biochem Biophys Res Commun. 2011; 407(1): 49-53.10.1016/j.bbrc.2011.02.09721352813Search in Google Scholar

9. Hori M, Oniki K, Ueda, Goto S, Mihara S, Marubayashi T, et al. Combined glutathione Stransferase T1 and M1 positive genotypes afford protection against type 2 diabetes in Japanese. Pharmacogenomics. 2007; 8(10): 1307-1314.10.2217/14622416.8.10.130717979505Search in Google Scholar

10. Datta SK, Kumar V, Pathak R, Tripathi AK, Ahmed RS, Kaira OP, et al. Association of glutathione S-transferase M1 and T1 gene polymorphism with oxidative stress in diabetic and nondiabetic chronic kidney disease. Ren Fail. 2010; 32(10): 1189-1195.10.3109/0886022X.2010.51734820954980Search in Google Scholar

11. Yang Y, Kao MT, Chang CC, Chen CM, Tsai JJ, Chang JG. Glutathione S-transferase T1 deletion is a risk factor for developing end-stage renal disease in diabetic patients. Int J Mol Med. 2004; 14(5): 855-859.10.3892/ijmm.14.5.855Search in Google Scholar

12. Hinney A. Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PloS ONE. 2007; 2(12): e1361.10.1371/journal.pone.0001361213793718159244Search in Google Scholar

13. Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. Plos Genet. 2007; 3(7): 1200-1210.10.1371/journal.pgen.0030115193439117658951Search in Google Scholar

14. Fredriksson R, Hagglund M, Olszewski PK, Stephansson O, Jacobsson JA, Olszewska AM, et al. The obesity gene, FTO, is of ancient origin, up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain. Endocrinology. 2008; 149(5): 2062-2071.10.1210/en.2007-145718218688Search in Google Scholar

15. Stratigopoulos G, Padilla SL, Leduc CA, Watson E, Hattersley AT, McCarthy MI, et al. Regulation of Fto/ Ftm gene expression in mice and humans. Am J Physiol Regul Integr Comp Physiol. 2008; 294(4):R1185-R1196.10.1152/ajpregu.00839.2007280871218256137Search in Google Scholar

16. Wahlen K, Sjolin E, Hoffstedt J. The common rs9939609 gene variant of the fat mass- and obesity- associated gene FTO is related to fat cell lipolysis. J Lipid Res. 2008; 49(3): 607-661.10.1194/jlr.M700448-JLR20018048838Search in Google Scholar

17. Li H, Kilpeläinen TO, Liu C. Association of genetic variation in FTO with risk of obesity and type 2 diabetes with data from 96,551 East and South Asians. Diabetologia. 2012; 55(4): 981-995.10.1007/s00125-011-2370-7329600622109280Search in Google Scholar

18. Hertel JK, Johansson S, Sonestedt E, Jonsson A, Lie RT, Platou CG, et al. FTO, type 2 diabetes, and weight gain throughout adult life: A meta-analysis of 41,504 subjects from the Scandinavian HUNT, MDC, and MPP studies. Diabetes. 2011; 60(5): 1637-1644.10.2337/db10-1340329234121398525Search in Google Scholar

19. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972; 18(6): 499-450.10.1093/clinchem/18.6.499Search in Google Scholar

20. Sambrook J, Frisch EF, Maniatis T, Eds. Molecular Cloning: A Laboratory Manual, 2nd ed. New York, NY: Cold Spring Harbor Press. 1989: 9.14-9.19.Search in Google Scholar

21. Arand M, Mühlbauer R, Hengstler J, Jäger E, Fuchs J, Winkler L, et al. A multiplex polymerase chain reaction protocol for the simultaneous analysis of the glutathione S-transferase GSTM1 and GSTT1 polymorphisms. Anal Biochem. 1996; 236(1): 184-186.10.1006/abio.1996.01538619490Search in Google Scholar

22. Hao K, Niu T, Sangokoya C, Li J, Xu X. SNP kit: An efficient approach to systematic evaluation of candidate single nucleotide polymorphisms in public databases. BioTechniques. 2002; 33(4): 822-848.10.2144/02334st06Search in Google Scholar

23. Stephens JW, Khanolkar MP, Bain SC. The biological relevance and measurement of plasma markers of oxidative stress in diabetes and cardiovascular disease. Atherosclerosis. 2009; 202(2): 321-329.10.1016/j.atherosclerosis.2008.06.006Search in Google Scholar

24. Wang L, Zhang Q, Li Q. Genetic polymorphisms of GSTT1, GSTM1, and NQO1 genes and diabetes mellitus risk in Chinese population. Biochem Biophys Res Commun. 2006; 341: 310-313.10.1016/j.bbrc.2005.12.195Search in Google Scholar

25. London SJ, Yuan JM, Chung FL, Gao YT. Isothiocyanates, glutathione S-transferase M1 and T1 polymorphisms, and lung-cancer risk: A prospective study of men in Shanghai, China. Lancet. 2000; 356(9231): 724-729.10.1016/S0140-6736(00)02631-3Search in Google Scholar

26. Yuille M, Condie A, Hudson C, Kote-Jarai Z, Stone E, Eeles R, et al. Relationship between glutathione S-transferase M1, T1, and P1 polymorphisms and chronic lymphocytic leukemia. Blood. 2002; 99(11): 4216-4218.10.1182/blood.V99.11.4216Search in Google Scholar

27. Chen K, Jiang QT, He HQ. Relationship between metabolic enzyme polymorphism and colorectal cancer. World J. Gastroenterol. 2005; 11(3): 331-335.Search in Google Scholar

28. Nowier SR, Kashmiry NK, Rasool HA, Morad H, Ismail S. Association of T2DMellitus and glutathione S transferase (GSTM1 and GSTT1) genetic polymorphism. Res J Med Med Sci. 2009; 4(2): 181-188.Search in Google Scholar

29. Hossaini AM, Zamrroni IM, Kashem RA, Khan ZF. Polymorphism of glutathione S-transferases as genetic risk factors for the development of complications in T2D mellitus. J Crit Care. 2008; 23(3):444-448.10.1016/j.jcrc.2008.06.00818725054Search in Google Scholar

30. Bid HK, Konwar R, Saxena M, Chaudhari P, Agrawal CG, Banerjee M. Association of glutathione S-transferase (GSTM1, T1 and P1) gene polymorphisms with type 2 diabetes mellitus in north Indian population. J Postgrad Med. 2010; 56(3): 176-181.10.4103/0022-3859.6863320739761Search in Google Scholar

31. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007; 316(5826): 889-894. 10.1126/science.1141634264609817434869Search in Google Scholar

32. Sanghera DK, Ortega L, Han S, Singh J, Ralhan SK, Wander GS, et al. Impact of nine common T2D risk polymorphisms in Asian Indian Sikhs: PPARG2 (Pro12 Ala), IGF2BP2, TCF7L2 and FTO variants confer a significant risk. BMC Med Genet. 2008; 9: 59. doi: 10.1186/ 1471-2350-9-59.10.1186/1471-2350-9-59248125018598350Search in Google Scholar

33. Yajnik CS, Janipalli CS, Bhaskar S, Kulkarni SR, Freathy RM, Prakash S, et al. FTO gene variants are strongly associated with type 2 diabetes in South Asian Indians. Diabetologia. 2009; 52(2): 247-252.10.1007/s00125-008-1186-6265800519005641Search in Google Scholar

34. Pirie FJ, Motala AA, Pegoraro J, Paruk IM, Govender T, Rom L. Variants in PPARG, KCNJ11, TCF7L2, FTO, and HHEX genes in South African subjects of Zulu descent with type 2 diabetes. Afr J Diabetes Med. 2010; 18(1): 12-16.Search in Google Scholar

35. Doney AS, Dannfald J, Kimber CH, Donnelly LA, Pearson E, Morris AD, et al. The FTO gene is associated with an atherogenic lipid profile and myocardial infarction in patients with type 2 diabetes: A Genetics of Diabetes Audit and Research Study in Tayside Scotland (Go- DARTS) study. Circ Cardiovasc Genet. 2009; 2(3): 255-259.10.1161/CIRCGENETICS.108.822320304574520031593Search in Google Scholar

36. Ortega-Azorín C, Sorlí JV, Asensio EM, Coltell O, Martínez-González MÁ, Salas-Salvadó J, et al. Associations of the FTO rs9939609 and the MC4R rs17782313 polymorphisms with type 2 diabetes are modulated by diet, being higher when adherence to the Mediterranean diet pattern is low. Cardiovasc Diabetol. 2012; 11: 137. 10.1186/1475-2840-11-137349575923130628Search in Google Scholar

eISSN:
1311-0160
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Medicine, Basic Medical Science, other