Open Access

Mathematical Modeling of the Coinfection Dynamics of Malaria-Toxoplasmosis in the Tropics


Cite

Ambrose-Thomas P., Petersen E. (2013): Congenital toxoplasmosis: Scientific background, clinical management and control, Springer Science and Business Media.Search in Google Scholar

Anderson R.M., May R.M. (1999): Infectious disease of humans: Dynamics and control, Oxford University Press, London, UK.Search in Google Scholar

Avelino M.M., Amaral N.N., Rodrigues I.MX, Rassi A.R., Gomes M.B.F., Costa T.L., Castro A.M. (2014): Congenital toxoplasmosis and pre-natal care state programs BMC, Infectious Disease 14(1): 33.10.1186/1471-2334-14-33Search in Google Scholar

Bakare E.A., Nwozo C.R. (2017): Bifurcation and sensitivity analysis of malaria - shistosomiasis Coinfection model, International Journal of Applied Computational Mathematics, doi:10.1007/s40819-017-0394-5.10.1007/s40819-017-0394-5Open DOISearch in Google Scholar

Beretta E., Capasso V., Darao D.G. (2018): A mathematical model for malaria transmission with asymptomatic carriers in two age groups in humans, Mathematical Biosciences and Engineering 300: 87 – 101.10.1016/j.mbs.2018.03.024Search in Google Scholar

Berretta E., Capasso V. (1986): On the general structure of epidemic systems: Global asymptotic stability, Computational Mathematics and Application, Part A 12: 677–694.10.1016/0898-1221(86)90054-4Search in Google Scholar

Cull P. (1986): Local and global stability for population models, Biological Cybernetics, 54(3): 141–149.10.1007/BF00356852Search in Google Scholar

Diekmann O., Hesterbeek J.A., Roberts M.G. (2010): Construction of next generation matrices for compartmental models in epidemics, Journal of the Royal Society of Biology, Interface 7: 875–885.10.1098/rsif.2009.0386Search in Google Scholar

Esteva-Peralta L., Velasco-Hernandez J. X. (2002): M-Matrices and local stability in epidemic models Mathematical and Computer Modeling, 36: 491–501.10.1016/S0895-7177(02)00178-4Search in Google Scholar

Fatmawati, Tasman H. (2016): An optimal treatment control of TB-HIV coinfection, International Journal of Mathematics and Mathematical Sciences, Article ID:8261208.10.1155/2016/8261208Search in Google Scholar

Felicia B.N., Levine J.F., Stoskopf M.K. (2004): Reproductive capacity of free moving cats and kitten survival rate, Journal of American Veterinary Medical Association: 225(9): 1399–1402.10.2460/javma.2004.225.139915552315Search in Google Scholar

Frenkel J.K., Dubey J.P., Smith D.D. (1989): Oocyst induced toxoplasmosis gondii infections in cats, Journal of Parasitology 25: 750–755.10.2307/3283060Search in Google Scholar

Gimba B., Bala S.I. (2017): Modeling the impact of bed-net use and treatment on malaria transmission dynamics, International Scholarly Research Notices: 2017: 6182492.10.1155/2017/6182492Search in Google Scholar

Gonzalez-Parra G.C., Arenas A.J., Aranda D.F., Villanova R.J., Jodar L. (2009): Dynamics of a model of toxoplasmosis disease in human and cat population Computer and Mathematics with Applications 57: 1692–1100.10.1016/j.camwa.2008.09.012Search in Google Scholar

Gonzalez-Parra G.C., Arenas A.J., Nino R.J.V. (2010): Modeling toxoplasmosis spread in cat population under vaccination, Theoretical Population Biology 77: 227–237.10.1016/j.tpb.2010.03.005Search in Google Scholar

Gumel A.B., Mukandavire Z., Garira W., Tchuenche J.M. (2009): Mathematical analysis of a model for hiv - malaria coinfection, Mathematical Biosciences and Engineer 6: 333 – 362.10.3934/mbe.2009.6.333Search in Google Scholar

Hanif L. (2018): Optimal control strategies to hiv - malaria coinfections, Journal of Physics Conference, doi :10.1088/1742-6596/974/1/012057.10.1088/1742-6596/974/1/012057Open DOISearch in Google Scholar

Hethcote H.W. (1994): A thousand and one epidemic model, S.A. Levin (Ed.), Frontiers in Theoretical Biology, Lecture Notes in Biomathematics, Vol 100, Springer - Verlag, Berlin, 504–515.10.1007/978-3-642-50124-1_29Search in Google Scholar

Kelting E.K. (2015): Toxoplasma gondii: A mathematical model of its transfer between cats and the environment, https://www.siam.org/Portals/0/Publications/SIURO/Volume%2011/1658.pdfSearch in Google Scholar

Mensah J., Dontwi J., Bonyah E. (2018): Stability analysis of zika - malaria coinfection model for malaria endemic region, Journal of Advances in Mathematics and Computer Science 26(1): 1–22.10.9734/JAMCS/2018/37229Search in Google Scholar

Montoya J., Liesenfeld O. (2004): Toxoplasmosis, Lancet 363: 1965–1976.10.1016/S0140-6736(04)16412-XSearch in Google Scholar

Mutua J., Vaidya N. (2015): Malaria and typhoid fever coinfection dynamics, Mathematical Biosciences and Engineering 264: 128 – 144.10.1016/j.mbs.2015.03.01425865934Search in Google Scholar

Nyamongo W., Chimbari M., Mukaratirwa S. (2015): Malaria endemicity and coinfection with tissue dwelling parasites in sub-Saharan Africa: A review, Infectious Disease of Poverty, doi:10.1186/s40249-015-0070-0.10.1186/s40249-015-0070-0457107026377900Open DOISearch in Google Scholar

Okosun K.O., Makinde O.D. (2014): A coinfection model of malaria and cholera disease with optimal control, Mathematical Biosciences, 258: 19-32.10.1016/j.mbs.2014.09.008Search in Google Scholar

Ross R. (1911): Some quantitative studies in epidemiology. International Journal of Nature 87: 466–467.10.1038/087466a0Search in Google Scholar

Shahu B.K., Gupta M.M., Subuduch B. (2013): Stability analysis of non linear systems using dynamic Routh-Hurwitz criteria, International Conference on Advances in Computing, Communications and Informatics (ICACCI), August 25.10.1109/ICACCI.2013.6637448Search in Google Scholar

Simon B., Akhwale W., Pullan R., Estambale B., Clarke S.E., Snow R.W., Hotez P.J. (2007): Epidemiology of plasmodium - helminth coinfection in Africa: Population at risk, potential impact on anaemia and prospects for combining control, American Journal of Tropical Medicine Hygiene 77: 88–98.10.4269/ajtmh.2007.77.88Search in Google Scholar

Sullivan A. (2012): A mathematical model for within host toxoplasmosis godii invasion dynamics, Mathematical Biosciences and Engineering: 9(3).10.3934/mbe.2012.9.647Search in Google Scholar

Traore B., Sangare B. (2018): A mathematical model of malaria transmission with structured vector population, Journal of Applied Mathematics, Article ID: 6754097.Search in Google Scholar

Van den Driessche P., Watmough J. (2002): Reproduction number and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences and Engineering 180: 29–48.10.1016/S0025-5564(02)00108-6Search in Google Scholar

World Health Organization (WHO) (2018): World Health Organization fact sheet on Malaria, www.who.int/news-room/fact-sheets/details/malaria.Search in Google Scholar

eISSN:
1896-3811
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Bioinformatics, other, Mathematics, Probability and Statistics, Applied Mathematics