Open Access

Some applications of weighing designs


Cite

Banerjee K.S. (1975): Weighing Designs for Chemistry, Medicine. Economics, Operations Research, Statistics. Marcel Dekker Inc., New York.Search in Google Scholar

Banerjee T., Mukerjee R. (2008): Optimal factorial designs for cDNA microarray experiments. Ann. Appl. Statist. 2: 366-385.Search in Google Scholar

Beckman R.J. (1973). An application of multivariate weighing designs. Communication in Statistics 1(6): 561-565.Search in Google Scholar

Box G.E., Hunter J.S., Hunter W.G. (2005). Statistics for Experimenters: Design, Innovation, and Discovery, 2nd Edition. Wiley.Search in Google Scholar

Ceranka B., Graczyk M. (2001): Optimum chemical balance weighing designs under the restriction on weighings. Discussiones Mathematicae-Probability and Statistics 21: 111-120.10.7151/dmps.1024Search in Google Scholar

Ceranka B., Graczyk M. (2003): Optimum chemical balance weighing designs for v+1 objects. Kybernetika 39: 333-340.Search in Google Scholar

Ceranka B., Katulska K. (1987a): The application of the theory of spring balance weighing design for experiments with mixtures (in Polish). Listy Biometryczne XXIV(1): 17-26.Search in Google Scholar

Ceranka B., Katulska K. (1987b): The application of the optimum spring balance weighing designs (in Polish). Siedemnaste Colloquium Metodologiczne z Agro- Biometrii: 98-108.Search in Google Scholar

Ceranka B., Katulska K. (1989): Application of the biased spring balance weighing theory to estimation of differences of line effects for legume content. Biometrical Journal 31: 103-110.10.1002/bimj.4710310113Search in Google Scholar

Ceranka B., Katulska K. (2001): A-optimal chemical balance weighing design with diagonal covariance matrix of errors. Moda 6, Advances in Model Oriented Design and Analysis, A.C. Atkinson, P. Hackl, W.G. Műller, eds., Physica-Verlag, Heidelberg, New York: 29-36.10.1007/978-3-642-57576-1_4Search in Google Scholar

Cheng C.S. (1980): Optimality of some weighing and n 2 fractional factorial designs. Annals of Statistics 8: 436-446.10.1214/aos/1176344963Search in Google Scholar

Gawande B.N., Patkar A.Y. (1999): Application of factorial design for optimization of Cyclodextrin Glycosyltransferase production from Klebsiella pneumoniae pneumonaiae AS-22, Biotechnology and Bioengineering 64(2): 168-173.10.1002/(SICI)1097-0290(19990720)64:2<168::AID-BIT5>3.0.CO;2-5Search in Google Scholar

Glonek G.F.V., Solomon P.J. (2004): Factorial and time course designs for cDNA microarray experiments. Biostatistics 5: 89-111.10.1093/biostatistics/5.1.89Search in Google Scholar

Graczyk M. (2009): Regular A-optimal design matrices X=(xij) xij=-1, 0, 1. Statistical Papers 50: 789-795.10.1007/s00362-009-0248-2Search in Google Scholar

Graczyk M. (2011): A-optimal biased spring balance design. Kybernetika 47: 893-901.Search in Google Scholar

Graczyk M. (2012a): Notes about A-optimal spring balance weighing design. Journal of Statistical Planning and Inference 142: 781-784.10.1016/j.jspi.2011.11.008Search in Google Scholar

Graczyk M. (2012b): A-optimal spring balance weighing design under some conditions. Communication in Statistics-Theory and Methods 41: 2386-239310.1080/03610926.2011.653469Search in Google Scholar

Graczyk M. (2012c): Regular A-optimal spring balance weighing designs. Revstat 10(3): 1-11.Search in Google Scholar

John P.W.M. (1971): Statistical Design and Analysis of Experiments. Macmillan, New York.Search in Google Scholar

Katulska K. (1984): The application of the theory of weighing design for feeding mixtures investigations and in the geodesy (in Polish). Czternaste Colloquium Metodologiczne z Agro-Biometrii: 195-208.Search in Google Scholar

Katulska K. (1989): Optimum biased spring balance weighing design. Statistics and Probability Letters 8: 267-271.10.1016/0167-7152(89)90132-6Search in Google Scholar

Kiefer J. (1974): General equivalence theory for optimum designs. The Annals of Statistics 2: 849-879.10.1214/aos/1176342810Search in Google Scholar

Koukouvinos Ch. (1995): Optimal weighing designs and some new weighing matrices. Statistics and Probability Letters 25: 37-42.10.1016/0167-7152(94)00203-KSearch in Google Scholar

Koukouvinos Ch., Seberry J. (1997): Weighing matrices and their applications. Journal of Statistical Planning and Inference 62: 91-101.10.1016/S0378-3758(96)00172-3Search in Google Scholar

Montgomery D.C. (1991): Design and Analysis of Experiments. 3rd edition. John Wiley & Sons, New York.Search in Google Scholar

Mukerjee R., Tang B. (2012): Optimal fractions of two-level factorials under a baseline parameterization. Biometrika 99(1): 71-84.10.1093/biomet/asr071Search in Google Scholar

Pukelsheim F. (1993): Optimal Design of Experiment. John Wiley & Sons, New York.Search in Google Scholar

Sathe Y.S., Shenoy R.G. (1990): Construction method for some A- and D- optimal weighing designs when N ≡ 3(mod4). Journal of Statistical Planning and Inference 24: 369-375.10.1016/0378-3758(90)90056-ZSearch in Google Scholar

Seta G., Mrówczyński M., Wachowiak H. (2000): Harmfulness and possibility of pollen beetle control with combined application of insecticides and foliar fertilisers (in Polish). Progress in Plant Protection/Postępy w Ochronie Roślin 40(2): 905-907.Search in Google Scholar

Sloane N.J.A., Harwit M. (1976). Masks for Hadamard transform optics, and weighing designs. Applied Optics 15(1): 107-114.Search in Google Scholar

Yang Y.H., Speed T. (2002): Design issues for cDNA microarray experiments. Nature Genetics (Suppl.) 3: 579-588.Search in Google Scholar

ISSN:
1896-3811
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Bioinformatics, other, Mathematics, Probability and Statistics, Applied Mathematics