Cite

[1] A. Futaki, H. Ono, and G. Wang, Transverse Kähler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds, J. Diff. Geom, 83/3, (2009), 585–63610.4310/jdg/1264601036Search in Google Scholar

[2] A. Ghosh, R. Sharma, and J. T. Cho, Contact metric manifolds with η-parallel torsion tensor, Ann. Glob. Anal. Geom., 34, (2008), 287–29910.1007/s10455-008-9112-1Search in Google Scholar

[3] A. M. Blaga, Eta-Ricci soliton on para-Kenmotsu manifold, Balkan Journal of Geometry and Its Applications, 20/1, (2015), 1–31Search in Google Scholar

[4] B. Barua and U. C. De, Characterizations of a Riemannian manifold admitting Ricci solitons, Facta Universitatis(NIS)Ser. Math. Inform, 28/2, (2013), 127–132Search in Google Scholar

[5] B. Chow, Peng Lu, and Lei Ni, Hamiltons Ricci flow, AMS Science Press, 77, (2006)10.1090/gsm/077Search in Google Scholar

[6] M. Calin and M. Crasmareanu, From the Eisenhart Problem to Ricci solitons in f-Kenmotsu manifolds, Bull.Malays. Math.Sci.Soc., (2)33/3, (2010), 361–368Search in Google Scholar

[7] C. He and M. Zhu, The Ricci solitons on Sasakian manifolds, arxiv:1109.4407v2, (2011)Search in Google Scholar

[8] C. L. Bejan and M. Crasmareanu, Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry, Anal. Global Anal. Geom., 46/2, (2014), 117–12710.1007/s10455-014-9414-4Search in Google Scholar

[9] C. S. Bagewadi and G. Ingalahalli, Ricci solitons in Lorentzian α-Sasakian manifolds, Acta Math. Academiae Paedagogicae Nýiregyháziensis, 28/1, (2012), 59–6810.5402/2012/421384Search in Google Scholar

[10] C. S. Bagewadi, G. Ingalahalli, and S. R. Ashoka, A Study on Ricci Solitons in Kenmotsu Manifolds, ISRN Geometry, 2013/Article ID 412593, (2013), 6–pages10.1155/2013/412593Search in Google Scholar

[11] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Springer, Berlin, Germany, 509, (1976)10.1007/BFb0079307Search in Google Scholar

[12] G. Calvaruso and D. Perrone, Geometry of H-paracontact metric manifolds, arxiv:1307.7662v1, (2013)Search in Google Scholar

[13] G. Ingalahalli and C. S. Bagewadi, Ricci solitons in α-Sasakian manifolds, ISRN Geometry, 2012/Article ID 421384, (2012), 13–pages10.5402/2012/421384Search in Google Scholar

[14] G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, http://arxiv.org/math.DG/0307245v1, (2003)10.3731/topologica.1.005Search in Google Scholar

[15] G. Perelman, Ricci flow with Surgery on three-manifolds, http://arxiv.org/mathDG/0303109v1. , (2003)Search in Google Scholar

[16] H. D. Cao, Limits of solutions to the Kähler-Ricci flow, J. Differential Geom., 45/2, (1997), 257–27210.4310/jdg/1214459797Search in Google Scholar

[17] H.G. Nagaraja and C.R. Premalatha, Ricci solitons in Kenmotsu manifolds, J. Math. Anal., 3/2, (2012), 18-2410.5402/2012/970682Search in Google Scholar

[18] H. Levy, Symmetric tensors of the second order whose covariant derivatives vanish, Annals of Mathematics. Second Series, 27/2, (1925), 91–9810.2307/1967964Search in Google Scholar

[19] J. W. Morgan and G. Tian, Ricci flow and the Poincare conjencture, http://arxiv.org/math.DG/0607607v2, (2007)Search in Google Scholar

[20] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 2/24, (1972), 83–10310.2748/tmj/1178241594Search in Google Scholar

[21] L. Das, Second order parallel tensors on α-Sasakian manifold, Acta Mathematica Academiae Paedagogicae Nýiregyháziensis, 23/1, (2007), 65–69Search in Google Scholar

[22] L. P. Eisenhart, Symmetric tensors of the second order whose first covariant derivatives are zero, Transactions of the American Mathematical Society, 25/2, (1923), 297–30610.1090/S0002-9947-1923-1501245-6Search in Google Scholar

[23] M. M. Tripathi, Ricci solitons in contact metric manifolds, http://arxiv.org/abs/0801.4222v1, (2008)Search in Google Scholar

[24] P. Topping, Lectures on the Ricci Flow, London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, UK,325, (2006)Search in Google Scholar

[25] R. Hamilton, Three manifold with positive Ricci curvature, J. Differential Geom., 17/2, (1982), 256–30610.4310/jdg/1214436922Search in Google Scholar

[26] R. Hamilton, Four-manifolds with positive curvature operator, J. Differential Geom., 24/2, (1986), 153–17910.4310/jdg/1214440433Search in Google Scholar

[27] R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986), Contemp. Math., American Math. Soc., Providence, RI, 71, (1988), 237–26210.1090/conm/071/954419Search in Google Scholar

[28] R. Sharma, Second order parallel tensor in real and complex space forms, International Journal of Mathematics and Mathematical Sciences, 12/4, (1989), 787–79010.1155/S0161171289000967Search in Google Scholar

[29] R. Sharma, Second order parallel tensors on contact manifolds, Algebras, Groups and Geometries, 7/2, (1990), 145–152Search in Google Scholar

[30] R. Sharma, Certain results on K-contact and (k, μ)-contact manifolds, Journal of Geometry, 89/1-2, (2008), 138–14710.1007/s00022-008-2004-5Search in Google Scholar

[31] S. T. Yau, On the scalar curvature of a compact Kähler manifold and the complex Monge-Ampere equation, I. Comm. Pure Appl. Math., 31/3, (1978), 339–41110.1002/cpa.3160310304Search in Google Scholar

[32] T. Chave and G. Valent, Quasi-Einstein metrics and their renormalizability properties, Helv. Phys. Acta., 69, (1996), 344–347Search in Google Scholar

[33] T. Chave and G. Valent, On a class of compact and non-compact quasi-Einstein metrics and their renormalizability properties, Nuclear Phys. B, 478, (1996), 758–77810.1016/0550-3213(96)00341-0Search in Google Scholar

[34] U. C. De, Ricci soliton and gradient Ricci soliton on P-Sasakian manifolds, The Aligarh Bull. of Maths., 29, (2010), 29–34Search in Google Scholar

eISSN:
1841-3307
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Mathematics, General Mathematics