Cite

[1] A. Ali, G. Kramer, Jets and QCD: A historical review of the discovery of the quark and gluon jets and its impact on QCD Eur. Phys. J. H. 36 (2011) 245–326. [arXiv:1012.2288 [hep-ph]]. ⇒ 8910.1140/epjh/e2011-10047-1Search in Google Scholar

[2] D. Bader, J. McCloskey, Modularity and graph algorithms, SIAM AN10 Minisymposium on Analyzing Massive Real-World Graphs, 2009, pp. 12-16. ⇒ 92Search in Google Scholar

[3] J. W. Berry, B. Hendrickson, R. A. LaViolette, C. A. Phillips, Tolerating the community detection resolution limit with edge weighting, Phys. Rev. E83, 5 (2011) 056119. ⇒ 9210.1103/PhysRevE.83.056119Search in Google Scholar

[4] V. D. Blondel, J-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks, Journal of Statistical Mechanics: Theory and Experiment10 (2008) P10008 ⇒ 9110.1088/1742-5468/2008/10/P10008Search in Google Scholar

[5] S. Carani, Yu. L Dokshitzer, M. H. Seymour, B. R. Webher, Longitudinally-invariant k-clustering algorithms for hadron-hadron collisions, Nuclear Physics B406 (1993) 187–224. ⇒ 9110.1016/0550-3213(93)90166-MSearch in Google Scholar

[6] I. Csabai, F. Czakó, Z. Fodor, Quark- and gluon-jet separations using neural networks, Phys. Rev. D44 7 (1991) R1905–R1908. ⇒ 9410.1103/PhysRevD.44.R1905Search in Google Scholar

[7] T. Davis, Y. Hu, The University of Florida Sparse Matrix Collection, Mathematical Software, Vol 38, Issue 1, 2011, pp 1:1–1:25. ⇒ 10410.1145/2049662.2049663Search in Google Scholar

[8] B. Denby, Neural networks and cellular automata in experimental high energy physics, Computer Physics Communications49 (1988) 429–448. ⇒ 9410.1016/0010-4655(88)90004-5Search in Google Scholar

[9] B. Denby, Neural networks in high energy physics: a ten year perspective, Computer Physics Communications119 (1999) 219. ⇒ 9210.1016/S0010-4655(98)00199-4Search in Google Scholar

[10] R. Forster, Louvain community detection with parallel heuristics on GPUs, 20th Jubilee IEEE International Conference on Intelligent Engineering Systems20 (2016) doi: 10.1109/INES.2016.7555126 ⇒ 91, 10310.1109/INES.2016.7555126Search in Google Scholar

[11] R. Forster, A. Fülöp, Jet browser model accelerated by GPUs, Acta Univ. Sapientiae Informatica8, 2 (2016) 171–185. ⇒ 9110.1515/ausi-2016-0008Search in Google Scholar

[12] R. Forster, A. Fülöp, Parallel kt jet clustering algorithm, Acta Univ. Sapientiae Informatica9, 1 (2017) 49–64. ⇒ 9110.1515/ausi-2017-0004Search in Google Scholar

[13] R. Forster, A. Fülöp, Hierarchical kt jet clustering for parallel achitectures, Acta Univ. Sapientiae Informatica9, 2 (2017) 195–213. ⇒ 87, 9210.1515/ausi-2017-0012Search in Google Scholar

[14] X. Glorot, A. Bordes, Y-Bengio, Deep sparse rectifier neural networks, Proc 14th International Conference on Artificial Intelligence and Statistics (AISTATS) 2011, Fort Lauderdale, FL, USA. Volume 15 of JMLR:W&CP 15. ⇒ 101Search in Google Scholar

[15] J. Han. C. Moraga, The influence of the sigmoid function parameters on the speed of backpropagation learning, IWANN ’96 Proc. of the Int. Workshop on Artificial Neural Networks: From Natural to Artificial Neural Computation, 1995, pp. 195-201. ⇒ 10210.1007/3-540-59497-3_175Search in Google Scholar

[16] R. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, H. S. Seung, Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature405 (2000) 947-951. ⇒ 10110.1038/35016072Search in Google Scholar

[17] D. P. Kingma, J. B. Adam, A method for stochastic optimization, 2014, arXiv:1412.6980 ⇒ 102Search in Google Scholar

[18] H. Kolanoski, Application of artifical neural networks in particle physics, Nuclear Instruments and Methods in Physics Research A367 (1995) 14–20. ⇒ 9210.1016/0168-9002(95)00743-1Search in Google Scholar

[19] P. T. Komiske, E. M. Metodiev, M. D. Schwartz, Deep learning in color: towards automated quark/gluon jet discrimination, J. High Energy Physics (2017) 110. ⇒ 9410.1007/JHEP01(2017)110Search in Google Scholar

[20] K. J. C. Leney, A neural-network clusterisation algorithm for the ATLAS silicon pixel detector, J. of Physics: Conbnference Series523 (2014) 012023. ⇒ 9410.1088/1742-6596/523/1/012023Search in Google Scholar

[21] L. Lönnblad, C. Peterson, T. Rögnvaldsson, Using neural networks to identify jets, Nuclear PhysicsB349 (1991) 675–702. ⇒ 9410.1016/0550-3213(91)90392-BSearch in Google Scholar

[22] H. Lu, Mahantesh Halappanavar, A. Kalyanaraman, Parallel heuristics for scalable community detection, Parallel Computing47 (2015) 1937. ⇒ 9110.1016/j.parco.2015.03.003Search in Google Scholar

[23] V. Mnih et al., Playing Atari with deep reinforcement learning, 2013, arXiv:1312.5602 ⇒ 99Search in Google Scholar

[24] V. Mnih et al., Human-level control through deep reinforcement learning, Nature, 2015, doi:10.1038/nature14236 ⇒ 9910.1038/1423699Open DOISearch in Google Scholar

[25] T. Muta, Foundation of Quantum Chrodinamics, World Scientific Press, 1986. ⇒ 88Search in Google Scholar

[26] M. E. J. Newman, M. Girvan, Finding and evaluating community structure in networks, Phys. Rev. E69 2 (2004) 026113. ⇒ 9210.1103/PhysRevE.69.026113Search in Google Scholar

[27] M. E. Peskin, D. V. Schroeder, Quantum Field Theory, Westview Press, 1995. ⇒ 87Search in Google Scholar

[28] C. Peterson, Track finding with neural networks, Nuclear Instruments and MethodsA279 (1988) 537. ⇒ 9410.1016/0168-9002(89)91300-4Search in Google Scholar

[29] D. Rohr, S. Gorbunov, A. Szostak, M. Kretz, T. Kollegger, T. Breitner, T. Alt, ALICE HLT TPC Tracking of Pb-Pb Events on GPUs, Journal of Physics: Conference Series396 (2012) doi:10.1088/1742-6596/396/1/012044 ⇒ 87, 10410.1088/1742-6596/396/1/01204487104Open DOISearch in Google Scholar

[30] G. P. Salam, Towards jetography, Eur. Phys. J. C67 (2010) 637-686. ⇒ 8810.1140/epjc/s10052-010-1314-6Search in Google Scholar

[31] S. Salur, Full Jet reconstruction in heavy ion collisions, Nuclear Physics A830, 1-4 (2009) 139c–146c. ⇒ 8910.1016/j.nuclphysa.2009.09.016Search in Google Scholar

[32] K. E. Selbach, Neural network based cluster reconstruction in the ATLAS pixel detector, Nuclear Instruments and Methods in Physics Research A718 (2013) 363–365. ⇒ 9410.1016/j.nima.2012.10.033Search in Google Scholar

[33] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: A simple way to prevent neural networks from overfitting, JMLR15 (2014) 1929-1958. ⇒ 102Search in Google Scholar

[34] G. Sterman, S. Weinberg, Jets from quantum chromodynamics, Phys. Rev. Lett. 39 (1977) 1436. ⇒ 89, 9010.1103/PhysRevLett.39.1436Search in Google Scholar

[35] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, A Bradford Book, 1998, ISBN: 978-0262193986 ⇒ 94, 99Search in Google Scholar

[36] G. Swirszcz, W. M. Czarnecki, R. Pascanu, Local minima in training of neural networks, 2016, arXiv:1611.06310 ⇒ 100Search in Google Scholar

[37] V. A. Traag, P. Van Dooren, Y. Nesterov, Narrow scope for resolution-limit-free community detection, Phys. Rev. E84, 1 (2011) 016114. ⇒ 9210.1103/PhysRevE.84.016114Search in Google Scholar

[38] ∗ ∗ ∗ Keras: The Python Deep Learning library ⇒ 101Search in Google Scholar

[39] ∗ ∗ ∗ SuiteSparse Matrix Collection ⇒ 104Search in Google Scholar

[40] ∗ ∗ ∗ United States Census Bureau ⇒ 103Search in Google Scholar

eISSN:
2066-7760
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Computer Sciences, other