Cite

[1] FAOSTAT. (2017), Retrieved from: http://www.fao.org/faostat. Accessed on: 20 November 2017.Search in Google Scholar

[2] Sharma, S., Sayyed, R. Z., Trivedi, M. H., Gobi, T. A. (2013), Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2(1), 587.10.1186/2193-1801-2-587432021525674415Search in Google Scholar

[3] Bargaz, A., Ghoulam, C., Faghire, M., Attar, H. A., Drevon, J.-J. (2011), The nodule conductance to O2 diffusion increases with high phosphorus content in the Phaseolus vulgaris-rhizobia symbiosis. Symbiosis 53, 157–164.10.1007/s13199-011-0121-7Search in Google Scholar

[4] Khan, M. S., Zaidi, A., Ahemad, M., Oves, M., Wani, P. A. (2010), Plant growth promotion by phosphate solubilizing fungi – Current perspective. Archives of Agronomy and Soil Science 56(1), 73–98.10.1080/03650340902806469Search in Google Scholar

[5] Hernández, I., Munné-Bosch, S. (2015), Linking phosphorus availability with photo-oxidative stress in plants. J. Exp. Bot. 66(10), 2889–2900.10.1093/jxb/erv05625740928Search in Google Scholar

[6] Sulieman, S., Schulze, J., Tran, L.-S. P. (2014), N-feedback regulation is synchronized with nodule carbon alteration in Medicago truncatula under excessive nitrate or low phosphorus conditions. J. Plant Physiol. 171, 407–410.10.1016/j.jplph.2013.12.00624594392Search in Google Scholar

[7] Nasr Esfahani, M. N., Kusano, M., Nguyen, K. H., Watanabe, Y., Van Ha, C., Saito, K., Sulieman, S., Herrera-Estrella, L., Tran, L.-S. P. (2016), Adaptation of the symbiotic Mesorhizobium–chickpea relationship to phosphate deficiency relies on reprogramming of whole-plant metabolism. Proc. Natl. Acad. Sci. 113, 4610–4619. DOI: 10.1073/pnas. 1609440113.10.1073/pnasSearch in Google Scholar

[8] Sulieman, S., Tran, L.-S. P. (2015). Phosphorus homeostasis in legume nodules as an adaptive strategy to phosphorus deficiency. Plant Sci. 239, 36–43. DOI:10.1016/j.plantsci. 2015.06.018.10.1016/j.plantsci.2015.06.018Search in Google Scholar

[9] Almeida, J. P. F., Hartwig, U. A., Frehner, M., Nösberger, J., Lüscher, A. (2000). Evidence that P deficiency induces N feedback regulation of symbiotic N2 fixation in white clover (Trifolium repens L.). Journal of Experimental Botany 51, 1289–1297. DOI: 10.1093/jexbot/51.348.1289.10.1093/jexbot/51.348.1289Search in Google Scholar

[10] Hernández, G., Valdés-López, O., Ramírez, M., Goffard, N., Weiller, G., Aparicio-Fabre, R., Fuentes, S. I., Erban, A., Kopka, J., Udvardi, M. K., Vance, C. P. (2009), Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus-stressed common bean plants. Plant Physiol. 151, 1221–1238. DOI: 10.1104/pp.109.143842.10.1104/pp.109.143842277308919755543Search in Google Scholar

[11] Richardson, A. E., Simpson, R. J. 2011. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol. 56, 989–996. DOI: 10.1104/pp.111.175448.10.1104/pp.111.175448313595021606316Search in Google Scholar

[12] Naseer, M., Muhammad, D. (2014), Direct and residual effect of Hazara rock phosphate (Hrp) on wheat and succeeding maize in alkaline calcareous soils. Pak. J. Bot. 46(5), 1755–1761.Search in Google Scholar

[13] da Costa, E. M., de Lima, W., Oliveira-Longatti, S. M., de Souza, F. M. (2015), Phosphate-solubilising bacteria enhance Oryza sativa growth and nutrient accumulation in an oxisol fertilized with rock phosphate. Ecological Engineering 83, 380–385.10.1016/j.ecoleng.2015.06.045Search in Google Scholar

[14] Smith, S. E., Read, D. (2008), The symbionts forming arbuscular mycorrhizas In: Smith, S. E., Read, D. (eds.), Mycorrhizal symbiosis, 3rd edition. New York: Academic Press. 13–41.10.1016/B978-012370526-6.50003-9Search in Google Scholar

[15] Neumann, E., George, E. (2010), Nutrient uptake: The arbuscular mycorrhiza fungal symbiosis as a plant nutrient acquisition strategy. In: Arbuscular mycorrhizas: Physiology and function. Dordrecht: Springer Netherlands. 137–167.10.1007/978-90-481-9489-6_7Search in Google Scholar

[16] Bhardwaj, D., Ansari, M. W., Sahoo, R. K., Tuteja, N. (2014), Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories 13(1), 10.10.1186/1475-2859-13-66Search in Google Scholar

[17] Berruti, A., Lumini, E., Balestrini, R., Bianciotto, V. (2016), Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Frontiers in Microbiology 6, 1–13.10.3389/fmicb.2015.01559Search in Google Scholar

[18] Sakariyawo, O. S., Adeyemi, N. O., Atayese, M. O., Aderibigbe S. G. (2016), Growth, assimilate partitioning and grain yield response of soybean (Glycine max L. Merrrill) varieties to carbon dioxide enrichment and arbuscular mycorrhizal fungi in the humid rainforest. Agro-Science 15, 29–40.10.4314/as.v15i2.5Search in Google Scholar

[19] Adeyemi, N., Sakariyawo, O., Atayese, M. (2017), Yield and yield attributes responses of soybean (Glycine max L. Merrill) to elevated CO2 and arbuscular mycorrhizal fungi inoculation in the humid transitory rainforest. Notulae Scientia Biologicae 9(2), 233–241. DOI: 10.15835/nsb9210002.10.15835/nsb9210002Search in Google Scholar

[20] Adeyemi, N. O., Atayese, M. O., Olubode, A. A., Akan, M. E. (2020), Effect of commercial arbuscular mycorrhizal fungi inoculant on growth and yield of soybean under controlled and natural field conditions. Journal of Plant Nutrition 43(4), 487–499. DOI: 10.1080/01904167. 2019.1685101.10.1080/01904167.2019.1685101Search in Google Scholar

[21] Ardakani M. R., Pietsch, G., Moghaddam, A., Raza, A., Friedel, J. K. (2009), Response of root properties to tripartite symbiosis between lucerne (Medicago sativa L.), rhizobia and mycorrhiza under dry organic farming conditions. Am. J. Agric. Biol. Sci. 4, 266–277.10.3844/ajabssp.2009.266.277Search in Google Scholar

[22] Antunes, P. M., De Varennes, A., Rajcan, I., Goss, M. J. (2006), Accumulation of specific flavonoids in soybean (Glycine max (L.) Merr.) as a function of the early tripartite symbiosis with arbuscular mycorrhizal fungi and Bradyrhizobium japonicum (Kirchner) Jordan. Soil Biol. Biochem. 38, 1234–1242.10.1016/j.soilbio.2005.09.016Search in Google Scholar

[23] McLean, E. O. (1982), Soil pH and lime requirement. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties (methodsofsoilan2). 199–224.10.2134/agronmonogr9.2.2ed.c12Search in Google Scholar

[24] Allison, L. (1965), Organic carbon. In: Black, C. A. (ed.), Methods of soil analysis. Part 2. Madison: American Society of Agronomy. 1307–1378.10.2134/agronmonogr9.2.c39Search in Google Scholar

[25] Jackson, M. (1962), Soil chemical analysis. New Delhi: Prentice Hall of India Pvt, Ltd.Search in Google Scholar

[26] Bray, R., Kurtz, L. (1945), Determination of total, organic and available forms of phosphorus in soil. Soil Science 59, 39–45.10.1097/00010694-194501000-00006Search in Google Scholar

[27] Murphy, J., Riley, J. P. (1962), A modified single solution method for the determination of phosphorus in natural waters. Analytical Chemical Acta 27, 31–36.10.1016/S0003-2670(00)88444-5Search in Google Scholar

[28] Bouyoucuos, G. (1962), Hydrometer method improved for making particle size analysis of soil. Agronomy Journal 54, 464–465.10.2134/agronj1962.00021962005400050028xSearch in Google Scholar

[29] Giovanetti, M., Mosse, B. (1980), An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist 84, 489–500.10.1111/j.1469-8137.1980.tb04556.xSearch in Google Scholar

[30] Peoples, M. B., Hebb, D. M., Gibson, A. H., Herridge, D. F. (1989), Development of the xylem ureide assay or the measurement of nitrogen fixation by pigeon pea (Cajanus cajan (1.) Millsp.). Journal of Experimental Botany 40, 535–542.10.1093/jxb/40.5.535Search in Google Scholar

[31] Young, E. G., Conway, C. F. (1942), On the estimation of allantoin by the rimini-schryver reaction. Journal of Biological Chemistry 142, 839–853.10.1016/S0021-9258(18)45082-XSearch in Google Scholar

[32] Cataldo, D. A., Haroon, M., Schrader, L. E., Youngs, V. L. (1975), Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications Soil Science Plant Analysis 6, 71–80.10.1080/00103627509366547Search in Google Scholar

[33] Rochester, I., Peoples, M., Constable, G. A., Gault, R. (1998), Faba beans and other legumes add nitrogen to irrigated cotton cropping systems. Australian Journal of Experimental Agriculture 38, 253–260.10.1071/EA97132Search in Google Scholar

[34] Phillips, J. M., Hayman, D. S. (1970), Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. T. Brit. Mycol. Soc. 55, 158–161.10.1016/S0007-1536(70)80110-3Search in Google Scholar

[35] Olivera, M., Tejera, N., Iribarne, C., Ocaña, A., Lluch, C. (2004), Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris): Effect of phosphorus. Physiol. Plant 121, 498–505. DOI: 10.1111/j.0031-9317.2004.00355.x.10.1111/j.0031-9317.2004.00355.xSearch in Google Scholar

[36] Sulieman, S., Ha, C. V., Schulze, J., Tran, L.-S. P. (2013), Growth and nodulation of symbiotic Medicago truncatula at different levels of phosphorus availability. J. Exp. Bot. 64(10), 2701–2712. DOI: 10.1093/jxb/ert122.10.1093/jxb/ert122369794023682114Search in Google Scholar

[37] Bargaz, A., Faghire, M., Farissi, M., Drevon, J.-J., Ghoulam, C. (2013), Oxidative stress in the root nodules of Phaseolus vulgaris is induced under conditions of phosphorus deficiency. Acta Physiol. Plant 35, 1633–1644.10.1007/s11738-012-1206-5Search in Google Scholar

[38] Sa, T. M., Israel, D. W. (1995), Nitrogen assimilation in nitrogen-fixing soybean plants during phosphorus deficiency. Crop Science 35(3), 814–820.10.2135/cropsci1995.0011183X003500030030xSearch in Google Scholar

[39] Rufty, T. W., Israel, D. W., Volk, R. J., Qiu, J., Sa, T. (1993), Phosphate regulation of nitrate assimilation in soybean. Journal Experimental Botany 44, 879–891.10.1093/jxb/44.5.879Search in Google Scholar

[40] Ribet, J., Drevon, J. J. (1995). Increase in conductance to oxygen and in oxygen uptake of soybean nodules under limiting phosphorus nutrition. Physiol. Plant 94, 298–304.10.1111/j.1399-3054.1995.tb05315.xSearch in Google Scholar

[41] Valentine, A. J., Benedito, V. A., Kang, Y. (2011), Legume nitrogen fixation and soil biotic stress: From physiology to genomics and beyond. Annu. Plant Rev. 42, 207–248.10.1002/9781444328608.ch9Search in Google Scholar

[42] Vardien, W., Mesjasz-Przybylowicz, J., Przybylowicz, W. J., Wang, Y. D., Steenkamp, E. T., Valentine, A. J. (2014), Nodules from Fynbos legume Virgilia divaricata have high functional plasticity under variable P supply levels. J. Plant Physiol. 171, 1732–1739.10.1016/j.jplph.2014.08.00525217716Search in Google Scholar

[43] Cely, M. V. T., de Oliveira, A. G., de Freitas, V. F., de Luca, M. B., Barazetti, A. R., dos Santos, I. M. O., Gionco, B., Garcia, G. V., Prete, C. E. C., Andrade, G. (2016), Inoculant of arbuscular mycorrhizal fungi (Rhizophagus clarus) increase yield of soybean and cotton under field conditions. Frontiers in Microbiology 7, 1–9.10.3389/fmicb.2016.00720488067227303367Search in Google Scholar

[44] Asghari, H. R., Cavagnaro, T. R. (2011), Arbuscular mycorrhizas enhance plant interception of leached nutrients. Funct. Plant Biol. 38, 219–226.10.1071/FP10180Search in Google Scholar

[45] Wu, X. Q., Hou, L. L., Sheng, J. M., Ren, J. H., Zheng, L., Chen, D., Ye, J. R. (2012), Effects of ectomycorrhizal fungus Boletus edulis and mycorrhiza helper Bacillus cereus on the growth and nutrient uptake by Pinus thunbergii. Biol. Fertil. Soils 48(4), 385–391.10.1007/s00374-011-0638-1Search in Google Scholar

[46] Öpik, M., Vanatoa, A., Vanatoa, E., Moora, M., Davison, J., Kalwij, J. M., Reier, Ü., Zobel, M. (2010), The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytologist 188(1), 223–241.10.1111/j.1469-8137.2010.03334.x20561207Search in Google Scholar

[47] Balzergue. C., Puech-Pagès, V., Bécard, G., Rochange, S. F. (2010), The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J. Exp. Bot. 3, 1049–1060.10.1093/jxb/erq335Search in Google Scholar

[48] Chalk, P. M., Souza, R. D. F., Urquiaga, S., Alves, B. J. R., Boddey, R. M. (2006), The role of arbuscular mycorrhiza in legume symbiotic performance. Soil Biology and Biochemistry 38(9), 2944–2951.10.1016/j.soilbio.2006.05.005Search in Google Scholar

[49] Pellegrino, E., Bedini, S., Avio, L., Bonari, E., Giovannetti, M. (2011), Field inoculation effectiveness of native and exotic arbuscular mycorrhizal fungi in a Mediterranean agricultural soil. Soil Biology and Biochemistry 43(2), 367–376.10.1016/j.soilbio.2010.11.002Search in Google Scholar

[50] Cozzolino, V., Di Meo, V., Piccolo, A. 2013. Impact of arbuscular mycorrhizal fungi applications on maize production and soil phosphorus availability. Journal of Geochemical Exploration 129, 40–44.10.1016/j.gexplo.2013.02.006Search in Google Scholar

[51] Williams, A., Ridgway, H. J., Norton, D. A. (2013), Different arbuscular mycorrhizae and competition with an exotic grass affect the growth of Podocarpus cunninghamii Colenso cuttings. New Forests 44(2), 183–195.10.1007/s11056-012-9309-9Search in Google Scholar

eISSN:
2068-2964
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Chemistry, Environmental Chemistry, Life Sciences, Plant Science, Ecology, other