Open Access

On the recovery of the doping profile in an time-dependent drift-diffusion model

 and    | Oct 20, 2015

Cite

[1] A. Jüngel, On the existence and uniqueness of transient solutions of a degenerate nonlinear drift-diffusion model for semiconductors, Math. Models Methods Appl. Sci. 4 (1994) 677-703.10.1142/S0218202594000388Search in Google Scholar

[2] A. Leitão, P.A. Markowich and J.P. Zubelli, On inverse doping profile problems for the voltage-current map. Inverse Problems, 22 (2006), 1071-1088.Search in Google Scholar

[3] A. Leitão, Semiconductors and Dirichlet-to-Neumann maps, Computational and applied mathematics. 25 (2006) 187-203.10.1590/S0101-82052006000200005Search in Google Scholar

[4] M. Burger, H.W. Engl, A. Leitão, Markowich P.A., On inverse problems for semiconductor equations. Milan Journal of Mathematics 72, (2004) 273-314.10.1007/s00032-004-0025-6Search in Google Scholar

[5] S. Busenberg, W. Fang, Identification of semiconductor contact resistivity. Quart. Appl. Math. 49 (1991) 639-649.Search in Google Scholar

[6] M. Burger, H.W. Engl, P.A. Markowich, a P. Pietr, Identification of doping profiles in semiconductor devices. Inverse Problems 17 (2001) 1765-1795.Search in Google Scholar

[7] M. Burger, H.W. Engl, P. Markowich, Inverse doping problems for semiconductor devices. In: Chan, T.F. et al (eds) Recent Progress in Computational and Applied PDEs. Kluwer/Plenum, New York, (2002) 39-53.Search in Google Scholar

[8] S. Busenberg, Fang W., Ito K., Modeling and analysis of laser-beaminducted current images in semiconductors. SIAM J. Appl. Math. 53 (1993) 187-204.Search in Google Scholar

[9]. Fang, K. Ito, Identifiability of semiconductor defects from LBIC images. SIAM J. Appl. Math. 52 (1992) 1611-1626.Search in Google Scholar

[10] W. Fang, K. Ito, Reconstruction of semiconductor doping profile from laser-beam-induced current image. SIAM J. Appl. Math. 54 (1994) 1067-1082.Search in Google Scholar

[11] W. Fang, K. Ito, Redfern D.A., Parameter identification for semiconductor diodes by LBIC imaging. SIAM J. Appl. Math. 62 (2002) 2149-2174.Search in Google Scholar

[12] J. Ildefonso Díaz, G. Galiano, A. Jüngel, On a quasilinear degenerate system arising in semiconductors theory. Part I:Existence and uniqueness of solutions, Nonlinear Analysis: Real World Applications 2 (2001) 305-336.Search in Google Scholar

[13] P. Guan, B. Wu, Existence of weak solutions to a degenerate time-dependent semiconductor equations with temperature effect, J.Math.Anal.Appl. 332 (2007) 367-380.10.1016/j.jmaa.2006.10.017Search in Google Scholar

[14] P.A. Markowich, The Stationary Semiconductor Device Equations. Springer, Vienna (1986).10.1007/978-3-7091-3678-2Search in Google Scholar

[15] S. Selberherr, Analysis and simulation of semiconductor devices, Springer, Wien, New York, 1984.10.1007/978-3-7091-8752-4Search in Google Scholar

[16] Y. Wang, P. Guan, Periodic and stationary solutions of the semiconductor equations, Ann. Math. 14 (1993) 262-274.Search in Google Scholar

[17] W. Fang, K. Ito, Global solutions of the time-dependent drift-diffusion semiconductor equations, J. Differential Equations 123 (1995) 523-566.10.1006/jdeq.1995.1172Search in Google Scholar

[18] W. Fang, K. Ito, Identifiability of semiconductor defects from LBIC images, SIAM J. Appl. Math., 52 (1992), pp. 1611-1626.Search in Google Scholar

[19] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cli s, N.J., 1964.Search in Google Scholar

[20] G. Tronianiello, Elliptic differential equations and obstacle problems, Plenum Press, 1987.10.1007/978-1-4899-3614-1Search in Google Scholar

[21] O.A. Ladyzhenskaya, Linear and Quasi-Linear Elliptic Equations, Academic Press, New York, 1987.Search in Google Scholar

eISSN:
1844-0835
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Mathematics, General Mathematics