Open Access

Comparative analysis of a POPC bilayer and a DPC micelle comprising an interfacial anchored peptide using all-atom MD simulations


Cite

[1]. D.E. Warschawski, A.A. Arnold, M. Beaugrand, A. Gravel, E. Chartrand, I. Marcotte, Choosing membrane mimetics for NMR structural studies of transmembrane proteins, Biochimica et Biophysica Acta - Biomembranes 1808 (2011) 1957-1974. DOI: 10.1016/j.bbamem.2011.03.016 Search in Google Scholar

[2]. M. Eeman, M. Deleu, From biological membranes to biomimetic model membranes, Biotechnology, Agronomy, Society and Environment 14 (2010) 719-736 (https://popups.uliege.be/1780-4507/index.php?id=17134&file=1&pid=6568) Search in Google Scholar

[3]. N. Kucerka, M.P. Nieh, J. Katsaras, Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature, Biochimica et Biophysica Acta 1808 (2011) 2761–2771. DOI: 10.1016/j.bbamem.2011.07.022 Search in Google Scholar

[4]. T.M. Ferreira, F. Coreta-Gomes, O.H.S. Ollila, M.J. Moreno, W.L.C. Vaz, D. Topgaard, Cholesterol and POPC segmental order parameters in lipid membranes: solid state 1H–13C NMR and MD simulation studies, Physical Chemistry and Chemical Physics 15 (2013) 1976-1989. DOI: 10.1039/C2CP42738A Search in Google Scholar

[5]. R.C. Oliver, J. Lipfert, D.A. Fox, R.H. Lo, S. Doniach, L. Columbus, Dependence of micelle size and shape on detergent alkyl chain length and head group, PLOS One 8 (2013) e62488. DOI: 10.1371/journal.pone.0062488 Search in Google Scholar

[6]. P. Lague, B. Roux, R.W. Pastor, Molecular dynamics simulations of the influenza hemagglutinin fusion peptide in micelles and bilayers: conformational analysis of peptide and lipids, Journal of Molecular Biology 354 (2005) 1129-1141. DOI: 10.1016/j.jmb.2005.10.038 Search in Google Scholar

[7]. H. Saito, T. Morishita, T. Mizukami, K. Nishiyama, K. Kawaguchi, H. Nagao, Molecular dynamics study of binary POPC bilayers: molecular condensing effects on membrane structure and dynamics, Journal of Physics Conference Series 1136 (2018) 012022. DOI: 10.1088/1742-6596/1136/1/012022 Search in Google Scholar

[8]. S. Faramarzi, B. Bonnett, C.A. Scaggs, A. Hoffmaster, D. Grodi, E. Harvey, B. Mertz, Molecular dynamics simulations as a tool for accurate determination of surfactant micelle properties, Langmuir 33 (2017) 9934-9943. DOI: 10.1021/acs.langmuir.7b02666 Search in Google Scholar

[9]. J.L. Lorieau, J.M. Louis, A. Bax, The complete influenza hemagglutinin fusion domain adopts a tight helical hairpin arrangement at the lipid:water interface, Proceedings of the National Academy of Sciences USA 107 (2010) 11341-11346. DOI: 10.1073/pnas.1006142107 Search in Google Scholar

[10]. M. Adélaïde, E. Salnikov, F. Ramos-Martín, C. Aisenbrey, C. Sarazin, B. Bechinger, N. D'Amelio, The mechanism of action of SAAP-148 antimicrobial peptide as studied with NMR and molecular dynamics simulation, Pharmaceutics 15 (2023) 761. DOI:10.3390/pharmaceutics15030761 Search in Google Scholar

[11]. L. Zhao, Z. Cao, Y. Bian, G. Hu, J. Wang, Y. Zhou, Molecular Dynamics Simulations of Human Antimicrobial Peptide LL-37 in Model POPC and POPG Lipid Bilayers, International Journal of Molecular Sciences 19 (2018) 1186. DOI: 10.3390/ijms19041186 Search in Google Scholar

[12]. A. Isvoran, P. Nedellec, V. Beswick, A. Sanson, Study of the electrostatic interactions between peptides and lipids at the membranes interface by molecular dynamics simulation, Revue Roumaine de Chimie 51 (2006) 1019-1024 (https://revroum.lew.ro/wp-content/uploads/2006/RRC_10_2006/sumar.pdf) Search in Google Scholar

[13]. L.O. Nunes, V.H.O. Munhoz, A.A. Sousa, K.R de Souza, T.L. Santos, M.P. Bemquerer, D.E.C. Ferreira, M.T.Q. de Magalhães, J.M. Resende, A.F.C. Alcântara, C. Aisenbrey, D.P. Veloso, B. Bechinger, R.M. Verly, High-resolution structural profile of hylaseptin-4: Aggregation, membrane topology and pH dependence of overall membrane binding process, Biochimica et Biophysica Acta. Biomembranes 1863 (2021) 183581. DOI: 10.1016/j.bbamem.2021.183581 Search in Google Scholar

[14]. S. Ghosh, G. Pandit, S. Debnath, S. Chatterjee, P. Satpati, Effect of monovalent salt concentration and peptide secondary structure in peptide-micelle binding, RSC Advances, 11 (2021) 36836. DOI: 10.1039/D1RA06772A Search in Google Scholar

[15]. A.P. Lyubartsev, A.L. Rabinovich, Recent development in computer simulations of lipid bilayers, Soft Matterials 7 (2011) 25-39. DOI: 10.1039/C0SM00457J Search in Google Scholar

[16]. A. Isvoran, D. Craciun, A. Ciorsac, N. Perrot, V. Beswick, P. Nedellec, A. Sanson, N. Jamin, A bioinformatics study concerning structural and functional properties of human caveolin proteins, Journal of the Serbian Chemical Society 79 (2014) 133-150. DOI: 10.2298/JSC130716100I Search in Google Scholar

[17]. A.W. Cohen, R. Hnasko, W. Schubert, M.P. Lisanti, Role of caveolae and caveolins in health and disease, Physiological Reviews 84 (2004) 1341-1379. DOI: 10.1152/physrev.00046.2003 Search in Google Scholar

[18]. H. Li, V. Papadopoulos, Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern, Endocrinology 139 (1998) 4991-4997. DOI: 10.1210/endo.139.12.6390 Search in Google Scholar

[19]. R.M. Epand, B.G. Sayer, R.F. Epand, Caveolin scaffolding region and cholesterol-rich domains in membranes, Journal of Molecular Biology 345 (2005) 339-350. DOI: 10.1016/j.jmb.2004.10.064 Search in Google Scholar

[20]. C. Le Lan, J. Gallay, M. Vincent, J.M. Neumann, B. de Foresta, N. Jamin, Structural and dynamic properties of juxta-membrane segments of caveolin-1 and caveolin-2 at the membrane interface, European Biophysical Journal 39 (2010) 307-325. DOI: 10.1007/s00249-009-0548-4 Search in Google Scholar

[21]. J. Lipfert, L. Columbus, V. B. Chu, S.A. Lesley, S. Doniach, Size and shape of detergent micelles determined by small-angle X-ray scattering, Journal of Physical Chemistry B 111 (2007) 12427-12438. DOI: 10.1021/jp073016l Search in Google Scholar

[22]. D.P. Tieleman, D. van der Spoel, H.J.C. Berendsen, Molecular dynamics simulations of dodecylphosphocholine micelles at three different aggregate sizes:  micellar structure and chain relaxation, Journal of Physical Chemistry B 104 (2000) 6380-6388. DOI: 10.1021/jp001268f Search in Google Scholar

[23]. S. Abel, F. Y. Dupradeau, M. Marchi, Molecular dynamics simulations of a characteristic DPC micelle in water, Journal of Chemical Theory and Computation 8 (2012) 4610-4623. DOI: 10.1021/ct3003207 Search in Google Scholar

[24]. S.J. Lee, B. Olsen, P.H. Sehlesinger, N.A. Baker, Characterization of perfluorooctylbromide-based nanoemulsion particles using atomistic molecular dynamics simulations, Journal of Physical Chemistry B 114 (2010) 10086-10096. DOI: 10.1021/jp103228c Search in Google Scholar

[25]. N. Kucerka, S. Tristram-Nagle, J.F. Nagle, Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains, Journal of Membrane Biology 208 (2005) 193-202. DOI: 10.1007/s00232-005-7006-8 Search in Google Scholar

[26]. J. Seelig, Deuterium magnetic resonance: theory and application to lipid membranes, Quarterly Reviews of Biophysics10 (1977) 353-418. DOI: 10.1017/s0033583500002948 Search in Google Scholar

[27]. B.R. Brooks, C.L. Brooks, A.D. Mackerell Jr., L. Nilsson, R.J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A.R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R.W. Pastor, C.B. Post, J.Z. Pu, M. Schaefer, B. Tidor, R.M. Venable, H.L. Woodcock, X. Wu, W. Yang, D.M. York, M. Karplus, CHARMM: the biomolecular simulation program, Journal of Computational Chemistry 30 (2009) 1545-1614. DOI: 10.1002/jcc.21287 Search in Google Scholar

[28]. A.D. MacKerell, D. Bashford, M. Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, M. Karplus, All-Atom empirical potential for molecular modeling and dynamics studies of proteins, Journal of Physical Chemistry B 102 (1998) 3586-3616. DOI: 10.1021/jp973084f Search in Google Scholar

[29]. J.B. Klauda, R.M. Venable, J.A. Freites, J.W. O'Connor, D.J. Tobias, C. Mondragon-Ramirez, I. Vorobyov, A.D. MacKerell, R.W. Pastor, Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types, Journal of Physical Chemistry B 114 (2010) 7830-7843. DOI: 10.1021/jp101759q Search in Google Scholar

[30]. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, Comparison of simple potential functions for simulating liquid water, Journal of Chemical Physics 79 (1983) 926-935. DOI: 10.1063/1.445869 Search in Google Scholar

[31]. V. Beswick, A. Isvoran, P. Nedellec, A. Sanson, N. Jamin, Membrane interface composition drives the structure and the tilt of the single transmembrane helix protein PMP1: MD studies, Biophysical Journal 100 (2011) 1660-1667. DOI: 10.1016/j.bpj.2011.02.002 Search in Google Scholar

[32]. J.P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, Journal of Computational Physics 23 (1977) 327-341. DOI: 10.1016/0021-9991(77)90098-5 Search in Google Scholar

[33]. J. Lauterwein, C. Bosch, L.R. Brown, K. Wuthrich, Physicochemical studies of the protein-lipid interactions in melittin-containing micelles, Biochimica and Biophysica Acta 556 (1979) 244-264. DOI: 10.1016/0005-2736(79)90046-4 Search in Google Scholar

[34]. T.A. Darden, L.G. Pedersen, Molecular modelling: an experimental tool, Environmental Health Perspectives 101 (1993) 410-412. DOI: 10.1289/ehp.93101410 Search in Google Scholar

[35]. A.D. MacKerell Jr., M. Feig, C.L. Brooks, Improved treatment of the protein backbone in empirical force fields, Journal of America Chemical Society 126 (2004) 698-699. DOI: 10.1021/ja036959e Search in Google Scholar

[36]. M.R. Saviello, S. Malfi, P. Campiglia, A. Cavalli, P. Grieco, E. Novellino, A. Carotenuto, New insight into the mechanism of action of the temporin antimicrobial peptides, Biochemistry 49 (2010) 1477-1485. DOI: 10.1021/bi902166d Search in Google Scholar

[37]. X. Cheng, S. Jo, H.S. Lee, J.B. Klauda, W. Im, CHARMM-GUI micelle builder for pure/mixed micelle and protein/micelle complex systems, Journal of Chemical Information and Modeling 53 (2013) 2171-2180. DOI: 10.1021/ci4002684 Search in Google Scholar

[38]. T. Lazaridis, B. Mallik, Y. Chen, Implicit solvent simulations of DPC micelle formation, Journal of Physical Chemistry B 109 (2005) 15098-15106. DOI: 10.1021/jp0516801 Search in Google Scholar

[39]. L. Saiz, M.L. Klein, Influence of highly polyunsaturated lipid acyl chains of biomembranes on the NMR order parameters, Journal of American Chemical Society 123 (2001) 7381-7387. DOI: 10.1021/ja003987d Search in Google Scholar

[40]. M. Wojciechowska, J. Miszkiewicz, J. Trylska, Conformational changes of anoplin, W-MreB1-9, and (KFF)3K peptides near the membranes, International Journal of Molecular Sciences 21 (2020) 9672. DOI: 10.3390/ijms21249672 Search in Google Scholar

[41]. S. Khemaissa, A. Walrant, S. Sagan, Tryptophan, more than just an interfacial amino acid in the membrane activity of cationic cell-penetrating and antimicrobial peptides, Quarterly Reviews of Biophysics 55 (2022) E10. DOI: 10.1017/S0033583522000105 Search in Google Scholar

eISSN:
2286-038X
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Chemistry, other