Open Access

Optimization of process factors using the Taguchi method of DOE towards the hydrodeoxygenation of acetic acid


Cite

[1]. J. Wang, Z. Luo, J. Zhang, Q. Dang, W. Chen, Reactions of furfural and acetic acid as model compounds for bio-oil upgrading in supercritical ethanol, ICECC (2011) 1587–1592.10.1109/ICECC.2011.6067982 Search in Google Scholar

[2]. K. Wang, D. Dayton, J. Peters, O. Mante, Reactive catalytic fast pyrolysis of biomass to produce high-quality bio-crude, Green Chem. 19 (2017) 3243-3251.10.1039/C7GC01088E Search in Google Scholar

[3]. R. Shakya, S. Adhikari, R. Mahadevan, E. Hassan, T. Dempster, Catalytic upgrading of bio-oil produced from hydrothermal liquefaction of Nannocloropsis sp., Bioresour. Technol. 252 (2018) 28-36.10.1016/j.biortech.2017.12.067 Search in Google Scholar

[4]. S. Zhang, X. Yang, H. Zhang, C. Chu, K. Zheng, M. Ju, L. Liu, Liquefaction of Biomass and Upgrading of Bio-Oil: A Review, Molecules. 24 (2019) 2250-2279.10.3390/molecules24122250 Search in Google Scholar

[5]. P.M. Mortensen, J.D. Grunwaldt, P.A. Jensen, K.G. Knudsen, A.D. Jensen, A review of catalytic upgrading of bio-oil to engine fuels, Appl. Catal. Gen. 407 (2011) 1–19.10.1016/j.apcata.2011.08.046 Search in Google Scholar

[6]. D.A. Ruddy, J.A. Schaidle, J.R.F. Iii, J. Wang, L. Moens, J.E. Hensley, Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: catalyst development through the study of model compounds, Green Chem. 16 (2014) 454–490. Search in Google Scholar

[7]. Y.H.E. Sheu, R.G. Anthony, E.J. Soltes, Kinetic studies of upgrading pine pyrolytic oil by hydrotreatment, Fuel Process. Technol. 19 (1988) 31–50.10.1016/0378-3820(88)90084-7 Search in Google Scholar

[8]. T. Toyao, S.M.A.H. Siddiki, A.S. Touchy, W. Onodera, K. Kon, Y. Morita, T. Kamachi, K. Yoshizawa, K. Shimizu, TiO2 -Supported Re as a general and chemoselective heterogeneous catalyst for hydrogenation of carboxylic acids to alcohols, Chem. Eur. J. 23 (2017) 1001–1006.10.1002/chem.20160476227874230 Search in Google Scholar

[9]. H. Wang, J. Male, Y. Wang, Recent Advances in Hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds, ACS Catal. 3 (2013) 1047–1070.10.1021/cs400069z Search in Google Scholar

[10]. D.D. Frey, F. Engelhardt, E.M. Greitzer, A role for “one-factor-at-a-time” experimentation in parameter design, Res. Eng. Des. 14 (2003) 65–74.10.1007/s00163-002-0026-9 Search in Google Scholar

[11]. M. Kowalczyk, Application of Taguchi and Anova methods in selection of process parameters for surface roughness in precision turning of titanium, Adv. Manuf. Sci. Technol. 38 (2014) 21-35. Search in Google Scholar

[12]. A.M. Lawal, A. Hart, H. Daly, C. Hardacre, J. Wood, Kinetics of hydrogenation of acetic acid over supported platinum catalyst, Energy Fuels 33 (2019) 5551–5560.10.1021/acs.energyfuels.9b01062 Search in Google Scholar

[13]. I.N. Tansel, S. Gülmez, M. Demetgul, Ş. Aykut, Taguchi Method–GONNS integration: Complete procedure covering from experimental design to complex optimization, Expert Syst. Appl. 38 (2011) 4780–4789. Search in Google Scholar

[14]. S. Athreya, D.Y.D. Venkatesh, Application of Taguchi method for optimization of process parameters in improving the surface roughness of lathe facing operation, IRJES 1 (2012) 13–19. Search in Google Scholar

[15]. V. Sundaramurthy, A.K. Dalai, J. Adjaye, The effect of phosphorus on hydrotreating property of NiMo/γ-Al2O3 nitride catalyst, Appl. Catal. Gen. 335 (2008) 204–210.10.1016/j.apcata.2007.11.024 Search in Google Scholar

[16]. Z. He, X. Wang, Required catalytic properties for alkane production from carboxylic acids: Hydrodeoxygenation of acetic acid, J. Energy Chem. 22 (2013) 883–894.10.1016/S2095-4956(14)60268-0 Search in Google Scholar

[17]. F. Zaera, The surface chemistry of metal-based hydrogenation catalysis, ACS Catal. 7 (2017) 4947–4967.10.1021/acscatal.7b01368 Search in Google Scholar

[18]. J. Pritchard, G.A. Filonenko, R. Putten, E.J.M. Hensen, E.A. Pidko, Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions, Chem. Soc. Rev. 44 (2015) 3808–3833. Search in Google Scholar

[19]. S. Srivastava, G.C. Jadeja, J. Parikh, Copper-cobalt catalyzed liquid phase hydrogenation of furfural to 2-methylfuran: An optimization, kinetics and reaction mechanism study, Chem. Eng. Res. Des. 132 (2018) 313–324. Search in Google Scholar

[20]. Y.Ş. Yildiz, Optimization of Bomaplex Red CR-L dye removal from aqueous solution by electrocoagulation using aluminum electrodes, J. Hazard. Mater. 153 (2008) 194–200.10.1016/j.jhazmat.2007.08.03417875363 Search in Google Scholar

[21]. P.K. Rakshit, R.K. Voolapalli, S. Upadhyayula, Acetic acid hydrogenation to ethanol over supported Pt-Sn catalyst: Effect of Bronsted acidity on product selectivity, Mol. Catal. 448 (2018) 78–90. Search in Google Scholar

[22]. H. Wan, R.V. Chaudhari, B. Subramaniam, Aqueous Phase Hydrogenation of Acetic Acid and Its Promotional Effect on p-cresol hydrodeoxygenation, Energy Fuels 27 (2013) 487–493.10.1021/ef301400c Search in Google Scholar

eISSN:
2286-038X
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Chemistry, other