Cite

[1]. R.P. Pogorilyi, I.V. Melnyk, Y.L. Zub, G.A. Seisenbaeva, V.G. Kessler, Enzyme immobilization on a nanoadsorbent for improved stability against heavy metal poisoning, Colloids Surf. B 144 (2016) 135-142.10.1016/j.colsurfb.2016.04.00327085045 Search in Google Scholar

[2]. G. Pozniak, B. Krajewska, W. Trochimczuk, Urease immobilized on modified polysulphone membrane: Preparation and properties, Biomaterials 16 (1995) 129-134. Search in Google Scholar

[3]. A.K. De Brito, C.S. Nordi, L. Caseli, Algal polysaccharides as matrices for the immobilization of urease in lipid ultrathin films studied with tensiometry and vibrational spectroscopy: Physical-chemical properties and implications in the enzyme activity, Colloids Surf. B 135 (2015) 639-645. Search in Google Scholar

[4]. Y. I. Doğaç, I. Deveci, M. Teke, B. Mercimek, TiO2 beads and TiO2-chitosan beads for urease immobilization, Mater. Sci. Eng. C 42 (2014) 429-435.10.1016/j.msec.2014.05.05825063138 Search in Google Scholar

[5]. F.S. Alatawi, M. Monier, N.H. Elsayed, Amino functionalization of carboxymethyl cellulose for efficient immobilization of urease, Int. J. Biol. Macromol. 114 (2018) 1018-1025.10.1016/j.ijbiomac.2018.03.14229581006 Search in Google Scholar

[6]. S.H. Baysal, R. Karagöz, Preparation and characterization of kappa-carrageenan immobilized urease, Prep. Biochem. Biotechnol. 35 (2005) 135-143.10.1081/PB-20005473415881595 Search in Google Scholar

[7]. F.Y. Mahlicli, S.A. Altinkaya, The effects of urease immobilization on the transport characteristics and protein adsorption capacity of cellulose acetate based hemodialysis membranes, J. Mater. Sci. Mater. Med. 20 (2009) 2167-2179.10.1007/s10856-009-3776-319468833 Search in Google Scholar

[8]. D.E. Anderson, S. Balapangu, H.N. Fleischer, R. Viade, F. Krampa, P. Kanyong, G. Awandare, E. Tiburu, Investigating the influence of temperature on the kaolinite-base synthesis of zeolite and urease immobilization for the potential fabrication of electrochemical urea biosensors, Sensors (Basel) 17 (2017) 1831. Search in Google Scholar

[9]. A. Tiwari, S. Aryal, S. Pilla, S. Gong, An amperometric urea biosensor based on covalently immobilized urease on an electrode made of hyperbranched polyester functionalized gold nanoparticles, Talanta 78 (2009) 1401-1407.10.1016/j.talanta.2009.02.03819362208 Search in Google Scholar

[10]. E. György, F. Sima, I. Mihailescu, T. Smausz, G. Megyeri, R. Kékesi, B. Hopp, L. Zdrentu, S. Petrescu, Immobilization of urease by laser techniques: synthesis and application to urea biosensors, J. Biomed. Mater. Res. A 89 (2009) 186-191. Search in Google Scholar

[11]. N. Mohamad, N. Marzuki, N. Buang, F. Huyop, R. Wahab, An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes, Biotechnol. Biotechnol. Equip. 29 (2015) 205-220.10.1080/13102818.2015.1008192443404226019635 Search in Google Scholar

[12]. L. Zhang, Y. Du, J. Song, H. Qi, Biocompatible magnetic nanoparticles grafted by poly(carboxybetaine acrylamide) for enzyme immobilization, Int. J. Biol. Macromol. 118 (2018) 1004-1012.10.1016/j.ijbiomac.2018.06.18129969641 Search in Google Scholar

[13]. H.K. Al-Hakeim, M. K. Kadhem, E.A. Grulke, Immobilization of urease enzyme on nanoceria modifies secondary and tertiary protein structures, Acta Chimica Slovaka 9 (2016) 44-53.10.1515/acs-2016-0008 Search in Google Scholar

[14]. H.K. Al-Hakeim, I.M. Al-Dahan. R. Bustan, Interaction of prolactin hormone with the surfaces of two new azo compounds, Int. J. Pharm. Pharm. Sci. 6 (2014) 383-387. Search in Google Scholar

[15]. H.K. Al-Hakeim, R.S. Al-Zabeba, E.A. Grulke, E.A. Al-Mulla, Interaction of calcium phosphate nanoparticles with human chorionic gonadotropin modifies secondary and tertiary protein structure, Nova Biotechnol. Chim. 14 (2015) 141-157.10.1515/nbec-2015-0023 Search in Google Scholar

[16]. H.K. Al-Hakeim, K. Jasem, S. Moustafa, Antipepsin activity of silicon dioxide nanoparticles, Rev. Colomb. Quim. 45 (2016) 5-11.10.15446/rev.colomb.quim.v45n3.58760 Search in Google Scholar

[17]. H.K. Al-Hakeim, J.K. Al-Shams, M.A. Kadhem, Immobilization of urease enzyme on ion-exchange resin, J. Univ. Babylon 20 (2012) 1231-1236. Search in Google Scholar

[18]. M.M. Bradford, A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72 (1976) 248-254.10.1016/0003-2697(76)90527-3 Search in Google Scholar

[19]. C.E. Bower, T. Holm-Hansen, A salicylate–hypochlorite method for determining ammonia in seawater, Can. Fish Aquat. Sci. 37 (1980) 794-798.10.1139/f80-106 Search in Google Scholar

[20]. M.J. Fishman, S.C. Downs, Methods for analysis of selected metals in water by atomic absorption, U.S. Geological Survey Water-Supply Paper 1540-C)1966(38-41. Search in Google Scholar

[21]. C. Vaghela, M. Kulkarni, S. Haram, R. Aiyer, M. Karve, A novel inhibition based biosensor using urease nanoconjugate entrapped biocomposite membrane for potentiometric glyphosate detection, Int. J. Biol. Macromol. 108 (2018) 32-40.10.1016/j.ijbiomac.2017.11.136 Search in Google Scholar

[22]. S.F. D’Souza, J. Kumar, S.K. Jha, B.S. Kubal, Immobilization of the urease on eggshell membrane and its application in biosensor, Mater. Sci. Eng. C 33 (2013) 850-854.10.1016/j.msec.2012.11.010 Search in Google Scholar

[23]. R.P. Pogorilyĭ, V.P. Goncharik, L.I. Kozhara, I. Zub, Covalent immobilization of urease on polysiloxane templates containing 3-aminopropyl and 3-mercaptopropyl groups, Prikl. Biokhim. Mikrobiol. 44 (2008) 621-625. Search in Google Scholar

[24]. J. Zhou, S. Chen, J. Wang, Research on the orientedly immobilized urease via concanavalin A, Chinese J. Biotechnol. 24 (2008) 617-621.10.1016/S1872-2075(08)60031-X Search in Google Scholar

[25]. S. Sungur, M. Elcin, U. Akbulut, Studies on immobilization of urease in gelatin by cross-linking, Biomaterials 13 (1992) 795-800.10.1016/0142-9612(92)90020-O Search in Google Scholar

[26]. M.V. Cattaneo, T.M. Chang, The potential of a microencapsulated urease-zeolite oral sorbent for the removal of urea in uremia, ASAIO Trans 37 (1991) 80-87. Search in Google Scholar

[27]. H.K. Al-Hakeim, K. Jasem, High ionic strength enhances the anti-pepsin activity of titanium dioxide nanoparticles, Nano Biomed. Eng. 8 (2016) 136-143. Search in Google Scholar

[28]. S. Dumitriu, M. Popa, V. Artenie, F. Dan, Bioactive polymers. 56: Urease immobilization on carboxymethylcellulose, Biotechnol. Bioeng. 34 (1989) 283-290.10.1002/bit.26034030218588105 Search in Google Scholar

eISSN:
2286-038X
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Chemistry, other