Cite

1. Afzal, S., Abdul, N., Nazeef, U., Ali, R., Muhammad, A., Muhammad, Z. & Muhammad S.K. (2013). Comparative study of heavy metals in soil and selected medicinal plants. Journal of Chemistry, article ID 621265, 5 pages. DOI:10.1155/2013/621265.10.1155/2013/621265Search in Google Scholar

2. Aghamirlou, H.M., Khadem, M., Rahmani, A., Sadeghian, M., Mahvi, A. H., Akbarzadeh, A. & Nazmara, S. (2015). Heavy metals determination in honey samples using inductively coupled plasma-optical emission spectrometry. Journal of Environmental Health Science & Engineering, 13, 39. DOI:10.1186/s40201-015-0189-810.1186/s40201-015-0189-8445604426045967Search in Google Scholar

3. Al Naggar, Y., Naiem, E., Mona, M. & Seif, A. (2013). Honey bees and their products as a bioindicator of environmental pollution with heavy metals. Mellifera, 13(26), 10-20.Search in Google Scholar

4. Ali, H., Khan, E. & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, Article ID 6730305, 14 pages. DOI:10.1155/2019/6730305.10.1155/2019/6730305Search in Google Scholar

5. Angelova, V.R., Ivanova, R.I., Todorov, J.M. & Ivanov, K.I. (2017). Potential of rapeseed (Brassica napus L.) for phytoremediation of soils contaminated with heavy metals. Journal of Environmental Protection and Ecology, 18(2), 468–478.Search in Google Scholar

6. Besser, J.M., Brumbaugh, W.G. & Ingersoll, C.G. (2015). Characterizing toxicity of metal contaminated sediments from mining areas. Applied Geochemistry, 57, 73–84. DOI:10.1016/j.apgeochem.2014.05.02110.1016/j.apgeochem.2014.05.021Search in Google Scholar

7. Buczkowski, R., Kondzielski, I. & Szamański, T. (2002). Methods of remediation of soil contaminated by heavy metals. Mikołaj Kopernik University Editions, Toruń, First Edition, pp. 1-110.Search in Google Scholar

8. Burden, C.M., Morgan, M.O., Hladun, K.R., Amdam, G.V., Trumble, J.J. & Smith, B.H. (2019). Acute sublethal exposure to toxic heavy metals alters honey bee (Apis mellifera) feeding behavior. Scientific reports, 9(1), Article ID 4253. DOI:10.1038/s41598-019-40396-x10.1038/s41598-019-40396-x641463530862878Search in Google Scholar

9. Conti, M.E. & Botrè, F. (2001). Honeybees and their products as potential bioindicators of heavy metals contamination. Environmental Monitoring Assessment, 69(3), 267–282. DOI:10.1023/A:101071910700610.1023/A:1010719107006Search in Google Scholar

10. Costa, A., Veca, M., Barberis, M., Tosti, A., Notaro, G., Nava, S., Lazzari, M., Agazzi, A. & Tangorra, F.M. (2019). Heavy metals on honeybees indicate their concentration in the atmosphere-a proof of concept. Italian Journal of Animal Science, 18(1), 309-315. DOI:10.1080/1828051X.2018.152005210.1080/1828051X.2018.1520052Search in Google Scholar

11. Dabkowska-Naskret, H., Różański, S. & Bartkowiak, A. (2016). Forms and mobility of trace elements in soils of park areas from the city of Bydgoszcz, north Poland. Soil Science Annual, 67(2), 73-78. DOI:10.1515/ssa-2016-0010.10.1515/ssa-2016-0010Search in Google Scholar

12. Diatta, J., Biber, M., Przygocka-Cyna, M. & Łukowiak, R. (2011). Application of soil-plant transfer coefficients and plant pollution indices for evaluating heavy metal contamination within the Marcinkowski’s Recreational Park (Poznań). Nauka Przyroda Technologie, 5(5), 79-86.Search in Google Scholar

13. Draszawka-Bołzan, B. (2015). Heavy Metals in Soils. World News of Natural Sciences, 2, 20-37.Search in Google Scholar

14. Dżugan, M., Wesołowska, M., Zaguła, G., Kaczmarski, M., Czernicka, M. & Puchalski, C. (2018). Honeybees (Apis mellifera) as a biological barrier for contamination of honey by environmental toxic metals. Environmental Monitoring and Assessment, 190(2), 101. DOI:10.1007/s10661-018-6474-010.1007/s10661-018-6474-029374848Search in Google Scholar

15. Dżugan, M., Zaguła, G., Wesołowska, M., Sowa, P. & Puchalski, C. (2017). Levels of toxic and essential metals in varietal honeys from Podkarpacie. Journal of Elementology, 22(3), 1039-1048. DOI:10.5601/jelem.2016.21.4.129810.5601/jelem.2016.21.4.1298Search in Google Scholar

16. Ehlken, S. & Kirchner, G. (2002). Environmental processes affecting plant root uptakeof radioactive trace elements and variability of transfer factor data: a review. Journal of Environmental Radioactivity, 58(2–3), 97–112. DOI:10.1016/S0265-931X(01)00060-110.1016/S0265-931X(01)00060-1Search in Google Scholar

17. Fakhimzadeh, K. & Lodenius, M. (2000). Heavy metals in Finnish honey, pollen and honey bees. Apiacta, 35(2), 85-95.Search in Google Scholar

18. Filipović-Trajković, R., Ilić, Z.S., Šunić, L. Andjelković, S. & (2012). The potential of different plant species for heavy metals accumulation and distribution. Journal of Food, Agriculture & Environment, 10(1), 959-964.Search in Google Scholar

19. Gandois, L. & Probst, A. (2012). Localisation and mobility of trace metal in silver fir needles. Chemosphere, 87(2), 204-210. DOI:10.1016/j.chemosphere.2011.12.02010.1016/j.chemosphere.2011.12.02022221667Search in Google Scholar

20. Gostin, I. (2010). Structural changes in silver fir needles in response to air pollution. Analele Universităţii din Oradea - Fascicula Biologie, 17(2), 300-305.Search in Google Scholar

21. Jin, Y., Luan, Y., Ning, Y. & Wang, L. (2018). Effects and mechanisms of microbial remediation of heavy metals in soil: a critical review. Applied Sciences, 8, Article ID 1336. DOI:10.3390/app808133610.3390/app8081336Search in Google Scholar

22. Kabata-Pendias, A. & Pendias, H. (2001). Trace elements in soils and plants. CRC Press Taylor & Francis Group, pp. 1-106.Search in Google Scholar

23. Kajka, K. & Rutkowska, B. (2018). Accumulation of selected heavy metals in soils and common dandelion (Taraxacum officinale) near a road with high traffic intensity. Soil Science Annual, 69(1/2018), 11–16. DOI:10.2478/ssa-2018-000210.2478/ssa-2018-0002Search in Google Scholar

24. Klotz K1, Weistenhöfer W, Neff F, Hartwig A, van Thriel C, Drexler H. (2017). The health effects of aluminum exposure. Deutsches Ärzteblatt International, 14(39), 653-659. DOI: 10.3238/arztebl.2017.0653.10.3238/arztebl.2017.0653565182829034866Search in Google Scholar

25. Ligocki, M., Tarasewicz, Z., Zygmunt, A. & Aniśko, M. (2011). The common dandelion (Taraxacum officinale) as an indicator of anthropogenic toxic metal pollution of environment. Acta Scientiarum Polonorum, Zootechnica, 10(4), 73–82.Search in Google Scholar

26. Mirecki, N., Agič, R., Šunić, L., Milenković, L. & Ilić, Z.S. (2015). Transfer factor as indicator of heavy metals content in plants. Fresenius Environmental Bulletin, 24(11), 4212-4219.Search in Google Scholar

27. Miskowiec, P., Łaptaś, A. & Zięba, K. (2015). Soil pollution with heavy metals in industrial and agricultural areas: A case study of Olkusz District. Journal of Elementology, 20(2), 353-362. DOI:10.5601/jelem.2014.19.3.69110.5601/jelem.2014.19.3.691Search in Google Scholar

28. Niedźwiecka, A. & Zamorska-Wojdyła, D. (2017). The bioaccumulation of heavy metals in Brassica napus L. in the area around Turów Power Station, Poland. E3S Web of Conferences 17, Article ID 00065. DOI:10.1051/e3sconf/2017170006510.1051/e3sconf/20171700065Search in Google Scholar

29. Oroian, M., Prisacaru, A., Hretcanu, E.C., Stroe, S.G., Leahu, A. & Buculei, A. (2016). Heavy metals profile in honey as a potential indicator of botanical and geographical origin. International Journal of Food Properties, 19(8), 1825–1836. DOI:10.1080/10942912.2015.110757810.1080/10942912.2015.1107578Search in Google Scholar

30. Perugini, M., Manera, M., Grotta, L., Abete, M.C., Tarasco, R. & Amorena, M. (2011). Heavy metal (Hg, Cr, Cd, and Pb) contamination in urban areas and wildlife reserves: honeybees as bioindicators. Biological Trace Element Research, 140(2), 170-176. DOI:10.1007/s12011-010-8688-z10.1007/s12011-010-8688-z20393811Search in Google Scholar

31. Petryk, A. (2016). Assessment of the content of heavy metals in plants and soil in the Trzebinia municipality, Poland. 4.copper. Infrastructure and Ecology of Rural Areas, 4(4), 1711–1721. DOI:10.14597/infraeco.2016.4.4.128Search in Google Scholar

32. Porrini, C., Ghini, S., Girotti, S., Sabatini, A.G., Gattavecchia, E. & Celli, G. (2002). Use of honey bees as bioindicators of environmental pollution in Italy. In J. Devillers J, Pham-Delègue MH (Eds), Honey bees: estimating the environmental impact of chemicals. New York: Taylor & Francis, pp. 187–247.Search in Google Scholar

33. Probst, A., Liu, H., Fanjul, M., Liao, B. & Hollande, E. (2009). Response of Vicia faba L. to metal toxicity on mine tailing substrate: geochemical and morphological changes in leaf and root. Environmental and Experimental Botany, 66(2), 297–308. DOI:10.1016/j.envexpbot.2009.02.00310.1016/j.envexpbot.2009.02.003Search in Google Scholar

34. Polish regulation of the Minister of Health (2003). Regulation on the maximum levels of chemical and biological contaminants that may be found in foods, food ingredients, authorized additives, processing aids or on the surface of foods. Poland, Warsaw. Dz.U.03.37.326.Search in Google Scholar

35. Polish regulation of the Minister of Environment (2002). Regulation on soil quality standards and standards of ground quality. Poland, Warsaw. Dz.U.02.165.1359.Search in Google Scholar

36. Reszel, R., Reszel, H., Pęcak J. & Hadam, B. (2003). The content of sulfur and heavy metals in soils of agricultural land and plants of protected areas of the Podkarpackie Voivodship. In: J. A. Tomaszek (Ed.), Postęp w inżynierii środowiska, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, pp. 435–445. (in Polish)Search in Google Scholar

37. Roman, A. (2010). Levels of copper, selenium, lead, and cadmium in forager bees. Polish Journal of Environmental Studies, 19(3), 663–669.Search in Google Scholar

38. Sadowska, M., Gogolewska, H., Pawelec, N., Sentkowska, A. & Krasnodębska-Ostręga, B. (2019). Comparison of the contents of selected elements and pesticides in honey bees with regard to their habitat. Environmental Science and Pollution Research, 26(1), 371–380. DOI:10.1007/s11356-018-3612-810.1007/s11356-018-3612-8631824730402693Search in Google Scholar

39. Šijacic-Nikolic, M., Stankovic, D., Krstic, B., Vilotic, D. & Ivetic, V. (2012). The potential of different lime tree (Tilia spp) genotypes for phytoextraction of heavy metals. Genetika, 44(3), 537-548. DOI:0.2298/GENSR1203537S10.2298/GENSR1203537SSearch in Google Scholar

40. Sitarz-Palczak, E. (2015). Evaluation of the content of selected heavy metals in samples of Polish honeys. Journal of Ecological Engineering, 16(3), 130-138. DOI:10.12911/22998993/294610.12911/22998993/2946Search in Google Scholar

41. Skorbiłowicz, E., Skorbiłowicz, M. & Cieśluk, I. (2018). Bees as bioindicators of environmental pollution with metals in an urban area. Journal of Ecological Engineering, 19(3), 229-234. DOI:10.12911/22998993/8573810.12911/22998993/85738Search in Google Scholar

42. Smical, A.I., Vasile, H., Oros, V., Juhasz, J. & Pop, E. (2008). Studies on transfer and bioaccumulation of heavy metals from soil into lettuce. Environmental Engineering and Management Journal, 7(5), 609-615. DOI:10.30638/eemj.2008.08510.30638/eemj.2008.085Search in Google Scholar

43. Tomašević, M., Rajšić, S., Dordević, D., Tasić, M., Krstić, J. & Novakovic, V. (2004). Heavy metals accumulation in tree leaves from urban areas. Environmental Chemistry Letters, 2(3), 151–154. DOI:10.1007/s10311-004-0081-810.1007/s10311-004-0081-8Search in Google Scholar

44. Tóth, M.D., Balázsy, S., Terek, O., Patsula, O., Halász, J.L., Simon, L., Koncz, J. & Anton, A. (2012). Study of the chromium, cadmium, copper, zinc contents of soil and dominant plant species in the floodplain of Upper-Tisza area. Studia Universitatis „Vasile Goldiş”, Seria Ştiinţele Vieţii, 22(2), 265-274.Search in Google Scholar

45. Van der Steen, J.J.M., Kraker, J. & Grotenhuis, T. (2015). Assessment of the potential of honeybees (Apis mellifera L.) in biomonitoring of air pollution by cadmium, lead and vanadium. Journal of Environmental Protection, 6(2), 96–102. DOI:10.4236/jep.2015.6201110.4236/jep.2015.62011Search in Google Scholar

46. Violante, A., Cozzolino, V., Perelomov, L., Caporale, A.G. & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition, 10(3), 268 – 292. DOI:10.4067/S0718-9516201000010000510.4067/S0718-95162010000100005Search in Google Scholar

47. Yan, X., Liu, M., Zhong, J., Guo, J. & Wu, W. (2018). How human activities affect heavy metal contamination of soil and sediment in a long-term reclaimed area of the Liaohe River Delta, North China. Sustainability, 10(2), Article ID 338. DOI:10.3390/su1002033810.3390/su10020338Search in Google Scholar

48. Yu, R., Ji, J., Yuan, X., Song, Y. & Wang, C. (2011). Accumulation and translocation of heavy metals in the canola (Brassica napus L.)—soil system in Yangtze River Delta, China. Plant Soil, 353(1-2), 33–45. DOI:10.1007/s11104-011-1006-510.1007/s11104-011-1006-5Search in Google Scholar

49. Zarić, N.M., Ilijević, K., Stanisavljević, L. & Grźetić, I. (2016). Metal concentrations around thermal power plants, rural and urban areas using honeybees (Apis mellifera L.) as bioindicators. International Journal of Environmental Science and Technology, 13(2), 413–422. DOI:10.1007/s13762-015-0895-x10.1007/s13762-015-0895-xSearch in Google Scholar

50. Zhelyazkova, I. (2012). Honeybees—bioindicators for environmental quality. Bulgarian Journal of Agricultural Science, 18(3), 435–442.Search in Google Scholar

eISSN:
2344-150X
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Industrial Chemistry, other, Food Science and Technology