Open Access

Escherichia coli as Possible Agents of Spread of Multidrug Resistance in Port Harcourt, Rivers State.


Cite

Alkali, B.R., Mohammed, K., Opaluwa, S.A., Najim, Z., Ochei, J., and Kakako, S.L., 2018. Resistance Pattern and Plasmid Profile of E. coli Isolated from Diarrhoeic Children in Selected Health Centres in Sokoto, Nigeria. J Adv Microbiol., 11(2), 1-7.10.9734/JAMB/2018/41007Search in Google Scholar

Awopeju, A.T., Ide, L.E., and Obunge, O.K., 2015. Antibiotic susceptibilities and plasmid profile of Extended Spectrum Beta Lactamase-producing Escherichia coli from community acquired urinary tract infection at the University of Port Harcourt Teaching Hospital, Nigeria. Br Microbiol Res J., 9(6), 1-9.10.9734/BMRJ/2015/19045Search in Google Scholar

Bauer, A.W., Kirby, W.M., Sherris, J.C., and Turck, M., 1966. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol., 45(4), 493-496.10.1093/ajcp/45.4_ts.4935325707Open DOISearch in Google Scholar

Buckner, M.M., Ciusa, M.L., and Piddock, L.J., 2018. Strategies to combat antimicrobial resistance: anti-plasmid and plasmid curing. FEMS Microbiol Immunol. 42(6), 781-804.10.1093/femsre/fuy031619953730085063Search in Google Scholar

Carattoli, A., 2009. Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother., 53(6), 2227 – 2238.1930736110.1128/AAC.01707-08268724919307361Search in Google Scholar

Card, R.M., Cawthraw, S.A., Nunez-Garcia, J., Ellis, R.J., Kay, G., Pallen, M.J., Woodward, M.J., and Anjum, M.F., 2017. An in-vitro chicken gut model demonstrates transfer of a multidrug resistance plasmid from Salmonella to commensal Escherichia coli. MBio., 8(4), e00777-17.10.1128/mBio.00777-17551625428720731Search in Google Scholar

Cheesbrough, M. District Laboratory Practice in Tropical Countries Part I, (2000). Cambridge University Press.Search in Google Scholar

Cookey, T.I., and Otokunefor, K., 2016. Poultry environment as a reservoir of antimicrobial resistant bacteria – A Nigerian story. Br Microbiol Res J., 17(1), 1–11.10.9734/BMRJ/2016/28601Search in Google Scholar

Cowan, S.T., and Steel, K.J. Manual for the Identification of Medical Bacteria. Fourth edition (1985). Cambridge University Press, London.Search in Google Scholar

Davis, R., and Brown, P.D., 2016. Multiple antibiotic resistance index, fitness and virulence potential in respiratory Pseudomonas aeruginosa from Jamaica. J Med Microb., 65(4), 261-271.10.1099/jmm.0.00022926860081Search in Google Scholar

de Been, M., Lanza, V.F., de Toro, M., Scharringa, J., Dohmen, W., Du, Y., Hu, J., Lei, Y., Li, N., Tooming-Klunderud, A., and Heederik, D.J., 2014. Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. PLoS Genetics. 10(12), e1004776.10.1371/journal.pgen.1004776427044625522320Search in Google Scholar

Fortini, D., Fashae, K., Villa, L., Feudi, C., García-Fernández, A., and Carattoli, A., 2015. A novel plasmid carrying bla CTX-M-15 identified in commensal Escherichia coli from healthy pregnant women in Ibadan, Nigeria. J Glob Antimicrob Resist., 3(1), 9-12.10.1016/j.jgar.2014.12.00227873656Search in Google Scholar

Foster, T.J., 1983. Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria. Microbiol Rev., 47(3), 361.10.1128/mr.47.3.361-409.19832815816355806Search in Google Scholar

Freire Martín, I., AbuOun, M., Reichel, R., La Ragione, R.M., and Woodward, M.J., 2014. Sequence analysis of a CTX-M-1 IncI1 plasmid found in Salmonella 4,5,12:i:−, Escherichia coli and Klebsiella pneumoniae on a UK pig farm. J Antimicrob Chemother., 69(8), 2098-2101.10.1093/jac/dku09824729584Search in Google Scholar

Horsfall, S.J., Abbey, S.D., Nwokah, E.G., and Okonko, I.O., 2017. Prevalence of Extended-Spectrum Beta-lactamases (ESBLs) and Plasmid status of Escherichia coli and Klebsiella pneumoniae isolates from clinical sources in UPTH, Port-Harcourt, Nigeria. New York Sci J., 10(3), 29 - 39Search in Google Scholar

Jacoby, G.A., Strahillevitz, J., and Hooper, D.C., 2014. Plasmid-mediated quinolone resistance. Microbiol Spectr., 2(2), doi:10.1128/microbiolspec.PLAS-0006-2013.10.1128/microbiolspec.PLAS-0006-2013428877825584197Open DOISearch in Google Scholar

Keelara, S., and Thakur, S., 2014. Dissemination of plasmid-encoded AmpC β-lactamases in antimicrobial resistant Salmonella serotypes originating from humans, pigs and the swine environment. Vet Microb., 173(1-2), 76-83.10.1016/j.vetmic.2014.07.01825115786Search in Google Scholar

Martínez-Martínez, L., Pascual, A., and Jacoby, G.A., 1998. Quinolone resistance from a transferable plasmid. Lancet., 351(9105), 797-799.Search in Google Scholar

National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility tests; Approved standard. Seventh edition (2000). M2-A7. National Committee for Clinical Laboratory Standards, Wayne, PA.Search in Google Scholar

Ogbolu, D.O., Daini, O.A., Ogunledun, A., Alli, O.A., and Webber, M.A., 2013. Dissemination of IncF plasmids carrying beta-lactamase genes in Gram-negative bacteria from Nigerian hospitals. J Infect Dev Ctries., 7(05), 382-390.10.3855/jidc.261323669427Search in Google Scholar

Ogbolu, D.O., Alli, A.O., Anorue, M.C., Daini, O.A., and Oluwadun, A., 2016. Distribution of plasmid-mediated quinolone resistance in Gramnegative bacteria from a tertiary hospital in Nigeria. Indian J Pathol Microbiol., 59(3), 322-326.10.4103/0377-4929.18810827510669Search in Google Scholar

Ojo, K.K., Kehrenberg, C., Odelola, H.A., and Schwarz, S., 2003. Structural analysis of the tetracycline resistance gene region of a small multiresistance plasmid from uropathogenic Escherichia coli isolated in Nigeria. J Antimicrob Chemother., 52(6), 1043-1044.10.1093/jac/dkh00514613948Search in Google Scholar

Ojo, K.K., Kehrenberg. C., Odelola. H.A., Schwarz. S., and Roberts, M.C., 2006. Tetracycline resistant plasmids from uropathogenic Escherichia coli from southwestern Nigeria. J Antimicrob Chemother., 18(1), 112-114.10.1179/joc.2006.18.1.11216572904Search in Google Scholar

Ojo, S.K., Sargin, B.O., and Esumeh, F.I., 2014. Plasmid Curing Analysis of Antibiotic Resistance in beta-lactamase Producing Staphylococci from Wounds and Burns Patients. Pak J Biol Sci., 17(1), 130-133.10.3923/pjbs.2014.130.13324783792Search in Google Scholar

Orhue, P.O., Okoebor, F.O., and Momoh, M.A., 2017. Pre and Post Plasmid Curing Effect on Pseudomonas aeruginosa Susceptibility to Antibiotics. Am J Curr Microb., 5(1), 33-41.Search in Google Scholar

Otokunefor, K., Agbude, P., and Otokunefor, T.V., 2018. Non-Clinical Isolates as Potential Reservoirs of Antibiotic Resistance in Port Harcourt, Nigeria. Pan Afr Med J., 30, 167.10.11604/pamj.2018.30.167.14261623550630455796Search in Google Scholar

Rains, C.P., Bryson, H.M., and Peters, D.H., 1995. Ceftazidime. An update of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy. Drugs., 49(4), 577-617.10.2165/00003495-199549040-0000877892917789291Open DOISearch in Google Scholar

Roca, I., Akova, M., Baquero, F., Carlet, J., Cavaleri, M., Coenen, S., Cohen, J., Findlay, D., Gyssens, I., Heure, O.E., and Kahlmeter, G., 2015. The global threat of antimicrobial resistance: Science for Intervention. New Microbes New Infect., 6, 22-29.10.1016/j.nmni.2015.02.007444639926029375Search in Google Scholar

Roche, G., 1989. Cefixime, the first oral third-generation cephalosporin. Presse Med. 18(32), 1541-1544.Search in Google Scholar

Schumacher, H., Skibsted, U., Skov, R., and Scheibel, J., 1996. Cefuroxime resistance in Escherichia coli: resistance mechanisms and prevalence. APMIS., 104(7-8), 531-538.10.1111/j.1699-0463.1996.tb04908.x8920806Search in Google Scholar

Seiffert, S.N., Hilty, M., Perreten, V., and Endimiani, A., 2013. Extendedspectrum cephalosporin-resistant Gram-negative organisms in livestock: an emerging problem for human health? Drug Resist Updat., 16(1-2), 22-45.10.1016/j.drup.2012.12.00123395305Search in Google Scholar

Soge, O.O., Adeniyi, B.A., and Roberts, M.C., 2006. New antibiotic resistance genes associated with CTX-M plasmids from uropathogenic Nigerian Klebsiella pneumoniae. J Antimicrob Chemother., 58(5), 1048-1053.1699784410.1093/jac/dkl37016997844Search in Google Scholar

Sultan, I., Rahman, S., Jan, A.T., Siddiqui, M.T., Mondal, A.H., and Haq, Q.M., 2018. Antibiotics, resistome and resistance mechanisms: A bacterial perspective. Front Microbiol., 9.10.3389/fmicb.2018.02066616056730298054Search in Google Scholar

Sumrall, E.T., Gallo, E.B., Aboderin, A.O., Lamikanra, A., and Okeke, I.N., 2014 Dissemination of the transmissible quinolone-resistance gene qnrS1 by IncX plasmids in Nigeria. PloS One., 9(10), e110279.10.1371/journal.pone.0110279420774925340787Search in Google Scholar

Watanabe, T., 1963. Infective heredity of multiple drug resistance in bacteria. Bacteriol Rev., 27(1), 87.1399911510.1128/br.27.1.87-115.196344117113999115Search in Google Scholar

Yang, H.Y., Nam, Y.S., and Lee, H.J., 2014. Prevalence of plasmidmediated quinolone resistance genes among ciprofloxacinnonsusceptible Escherichia coli and Klebsiella pneumoniae isolated from blood cultures in Korea. Can J Infect Dis Med Microbiol., 25(3), 163-169.10.1155/2014/329541417398025285114Open DOISearch in Google Scholar

eISSN:
2544-6320
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Chemistry, Biochemistry, Environmental Chemistry, Industrial Chemistry