Open Access

Evaluation of Some Salicylaldehyde-derived Baylis-Hillman Adducts and Coumarin Derivatives as Potential Antisickling Compounds


Cite

Appendino, G., Mercalli, E., Fuzzati, N., Arnoldi, L., Stavri, M., Gibbons, S., Ballero, M. and Maxia, A., 2004. Antimycobacterial coumarins from the sardinian giant fennel (Ferula communis). J. Nat. Prod., 67(12), 2108-2110.10.1021/np049706n15620264Search in Google Scholar

Archer, N., Galacteros, F. and Brugnara, C., 2015. Clinical trials update in sickle cell anemia. Am. J. Hematol., 90(10), 934-950.10.1002/ajh.24116575213626178236Search in Google Scholar

Ashley-Koch, A., Yang, Q. and Olney, R.S., 2000. Sickle hemoglobin (Hb S) allele and sickle cell disease: A HuGE review. Am. J. Epidemiol., 151(9), 839-845.10.1093/oxfordjournals.aje.a01028810791557Search in Google Scholar

Asif, M., 2015. Pharmacological activities and phytochemistry of various plant containing coumarin derivatives. Curr. Sci. Perspect., 1(3), 77-90.Search in Google Scholar

Bernaudin, F., Socie, G., Kuentz, M., Chevret, S., Duval, M. Bertrand, Y., Vannier, J.-P., Yakouben, K., Thuret, I., Bordigoni, P., Fischer, A., Lutz, P., Stephan, J.-L., Dhedin, N., Plouvier, E., Margueritte, G., Bories, D., Verlhac, S., Esperou, H., Coic, L., Vernant, J.-P. and Gluckman, E., 2007. Long-term results of related myeloablative stem-cell transplantation to cure sickle cell disease. Blood, 110(7), 2749-2756.10.1182/blood-2007-03-07966517606762Search in Google Scholar

Buchanan, G.R., De Baun, M.R., Quinn, C.T. and Steinberg, M.H., 2004. Sickle cell disease. Hematology, 2004, 35-47.10.1182/asheducation-2004.1.3515561675Open DOISearch in Google Scholar

Charache, S., Terrin, M.L., Moore, R.D., Dover, G.J., Barton, F.B., Eckert, S.V., McMahon R.P. and Bonds, D.R., 1995. Effect of hydroxyurea on the frequency of painful crises in Sickle cell anemia. N. Engl. J. Med., 332, 1317-1322.10.1056/NEJM1995051833220017715639Search in Google Scholar

Chikezie, P.C., Chikezie, C.M. and Amaragbulem, P.I., 2010. Effect of antimalarial drugs on polymerization of sickle cell hemoglobin (HbS). Turk. J. Biochem., 35(1), 41-44.Search in Google Scholar

Dadwal, M., Mohan, R., Panda, D., Mobin, S. M. and Namboothiri, I.N.N., 2006. The Morita–Baylis–Hillman adducts of β-aryl nitroethylenes with other activated alkenes: synthesis and anticancer activity studies. Chem. Comm., 2006, 338-340.10.1039/B512267H16391753Search in Google Scholar

Egunyomi, A., Moody, J.O. and Eletu, O.M., 2009. Antisickling activities of two ethnomedicinal plant recipes used for the management of sickle cell anaemia in Ibadan, Nigeria. Afr. J. Biotech., 8(1), 20-25.Search in Google Scholar

Haywood, C.M., Beach, C., Bediako, S., Carroll, C. P., Lattimer, L., Jarrett, D. and Lanzkron, S., 2011. Examining the characteristics and beliefs of hydroxyurea users and nonusers among adults with sickle cell disease. Am. J. Hematol., 86(1), 85-87.10.1002/ajh.21883323334921117058Search in Google Scholar

He, J.-Y., Zhang, W., He, L.-C. and Cao, Y.-X., 2007. Imperatorin induces vasodilatation possibly via inhibiting voltage dependent calcium channel and receptor-mediated Ca2+ influx and release. Eur. J. Pharmacol., 573, 170-175.10.1016/j.ejphar.2007.06.04317662269Search in Google Scholar

Hoban, M.D., Orkin, S.H. and Bauer, D.E., 2016. Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease. Blood, 127(7), 839-848.10.1182/blood-2015-09-618587476008926758916Search in Google Scholar

Hoult, J.R. and Paya, M., 1996. Pharmacological and biochemical actions of simple coumarins: natural products with therapeutic potential. Gen. Pharmacol., 27, 713-722.10.1016/0306-3623(95)02112-4Open DOISearch in Google Scholar

Imaga, N.A., Chukwu, C.E., Blankson, A. and Gbenle, G.O., 2013. Biochemical assessment of Ciklavit®, a nutraceutical used in sickle cell anaemia management. Journal of Herbal Medicine, 3, 137-148.10.1016/j.hermed.2013.05.003Search in Google Scholar

Iwu, M.M., Igboko, A.O., Onwubiko, H. and Ndu, U.E., 1988. Effect of cajaminose from Cajanus cajan on gelation and oxygen affinity of sickle cell haemoglobin. J. Ethnopharmacol., 23, 99-104.10.1016/0378-8741(88)90118-3Open DOISearch in Google Scholar

Kaye, P.T. and Musa, M.A., 2002. A Convenient and Improved Baylis-Hillman Synthesis of 3-Substituted 2H-1-benzopyran-2-ones. Synthesis, 18, 2701-2706.10.1055/s-2002-35984Search in Google Scholar

Kaye, P.T., Musa, M.A. and Nocanda, X.W., 2003. Efficient and chemoselective access to 3-(chloromethyl)coumarins via direct cyclisation of unprotected Baylis–Hillman adducts. Synthesis, 4, 531-534.10.1055/s-2003-37655Search in Google Scholar

Kennedy, R.O. and Thornes, R.D. (Eds.). Coumarins: Biology, Applications and Mode of Action. Wiley, New York, 1997.Search in Google Scholar

Kidane, A.G., Salacinski, H., Tiwari, A., Bruckdorfer, K.R. and Seifalian, A.M., 2004. Anticoagulant and antiplatelet agents: their clinical and device application(s) together with usages to engineer surfaces. Biomacromolecules, 5, 798-813.10.1021/bm034455315132664Open DOISearch in Google Scholar

Kontogiorgis, C.A. and Hadjipavlou, L.D., 2004. Synthesis and biological evaluation of novel coumarin derivatives with a 7-azomethine linkage. Bioorg. Med. Chem. Lett., 14, 611-614.10.1016/j.bmcl.2003.11.06014741253Open DOISearch in Google Scholar

Kutlar, A., Ataga, K. and Reid, M., 2012. A phase 1/2 trial of HQK-1001, an oral fetal globin inducer, in sickle cell disease. American. J. Hematol., 87(11), 1017-1021.10.1002/ajh.23306390479222887019Search in Google Scholar

Ma, T., Liu, L., Xue, H., Li, L., Han, C., Wang, L., Chen, Z. and Liu, G., 2008. Chemical library and structure-activity relationships of 11-demethyl-12-oxo calanolide A analogues as anti-HIV-1 agents. J. Med. Chem., 51, 1432-1446.10.1021/jm701405p18284187Search in Google Scholar

Ma, Y.- L., Rees, D.C., Gibson, J.S. and Ellory, J.C., 2012. The conductance of red blood cells from sickle cell patients: ion selectivity and inhibitors. J. Physiol., 590(9), 2095-2105.10.1113/jphysiol.2012.229609344715322411011Search in Google Scholar

Makani, J., Williams, T. N. and Marsh, K., 2013. Sickle cell disease in Africa: burden and research priorities. Ann. Trop. Med. Parasitol., 101(1), 3-14.10.1179/136485907X154638Search in Google Scholar

Mehanna, A.S., 2001. Sickle cell anemia and antisickling agents then and now. Current Medicinal Chemistry, 8, 79-88.10.2174/0929867013373778Search in Google Scholar

Narender, P., Srinivas, U., Gangadasu, B., Biswas, S. and Rao, V.J., 2005. Anti-malarial activity of Baylis-Hillman adducts from substituted 2-chloronicotinaldehydes. Bioorg. Med. Chem. Lett., 15, 5378-5381.10.1016/j.bmcl.2005.09.008Open DOISearch in Google Scholar

Nelson, D.L. and Cox, M.M. Lehninger Principles of Biochemistry. Fourth edition, (2008) pp 75-189. W.H. Freeman, New York.Search in Google Scholar

Oder, E., Safo, M.K., Abdulmalik, O. and Kato, G.J., 2016. New Developments in Anti-Sickling Agents: Can Drugs Directly Prevent the Polymerization of Sickle Haemoglobin In Vivo? British Journal of Haematology, 175(1), 24-30.10.1111/bjh.14264Search in Google Scholar

Olomola, T.O., Klein, R., Mautsa, N., Sayed, Y. and Kaye, P.T., 2013. Synthesis and evaluation of coumarin derivatives as potential dualaction HIV-1 protease and reverse transcriptase inhibitors. Bioorg. Med. Chem., 21, 1964-1971.10.1016/j.bmc.2013.01.025Search in Google Scholar

Olomola, T.O., Mosebi, S., Klein, R., Traut-Johnstone, T., Coates, J., Hewer, R. and Kaye P.T., 2014. Novel furocoumarins as potential HIV-1 integrase inhibitors. Bioorg. Chem., 57, 1-4.10.1016/j.bioorg.2014.07.008Search in Google Scholar

Panepinto, J.A., Walters, M.C., Carreras, J., Marsh, J., Bredeson, C.N., Gale, R.P., Hale, G.A., Horan, J., Hows, J.M., Klein, J.P., Pasquini, R., Roberts, I., Sullivan, K., Eapen, M. and Ferster, A., 2007. Matched-related donor transplantation for sickle cell disease: report from the Center for International Blood and Transplant Research. Brit. J. Haematol., 137, 479-485.10.1111/j.1365-2141.2007.06592.xSearch in Google Scholar

Rashamuse, T.J., Musa, M.A., Klein, R. and Kaye, P.T., 2009. Regiocontrolled Michaelis–Arbuzov reactions of 3-(halomethyl)-coumarins. J. Chem. Res., 5, 302-305.10.3184/030823409X439708Open DOISearch in Google Scholar

Saraceno, R., Teoli, M. and Chimenti, S., 2008. Hydroxyurea associated with concomitant occurrence of diffuse longitudinal melanonychia and multiple squamous cell carcinomas in an elderly subject. Clin. Ther., 30(7), 1324-1329.10.1016/S0149-2918(08)80057-4Open DOISearch in Google Scholar

Steinberg, M.H., 1999. Management of sickle cell disease. N. Engl. J. Med., 340(13), 1021-1030.10.1056/NEJM19990401340130710099145Search in Google Scholar

Vasconcellos, M.L.A.A., Silva, T.M.S., Camara, C.A., Martins, R.M., Lacerda, K.M., Lopes, H.M., Pereira, V.L.P., de Souza, R.O.M.A. and Crespo, L.T.C., 2006. Baylis–Hillman adducts with molluscicidal activity against Biomphalaria glabrata. Pest Managment Science, 62, 288-292.10.1002/ps.115316475220Search in Google Scholar

Yang, Y.Z., Ranz, A., Pan, H.Z., Zhang, Z.N., Lin, X. B. and Meshnick, S.R., 1992. Daphnetin: a novel antimalarial agent with in vitro and in vivo activity. Am. J. Trop. Med. Hyg., 46, 15-20.10.4269/ajtmh.1992.46.151311154Open DOISearch in Google Scholar

eISSN:
2544-6320
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Chemistry, Biochemistry, Environmental Chemistry, Industrial Chemistry