Cite

Allam A.A., El-Ghareeb A.W., Abdul-Hamid M., Bakery A.E., Gad M., Sabri M.(2010). Effect of prenatal and perinatal acrylamide on the biochemical and morphological changes in liver of developing albino rat. Arch. Toxicol., 84: 129–141.10.1007/s00204-009-0475-2Search in Google Scholar

Allam A., El-Ghareeb A., Abdul-Hamid M., Baikry A., Sabri M.(2011). Prenatal and perinatal acrylamide disrupts the development of cerebellum in rat: biochemical and morphological studies. Toxicol. Ind. Health, 27: 291–306.10.1177/0748233710386412Search in Google Scholar

Bai X.C., Lu D., Liu A.L., Zhang Z.M., Li X.M., Zou Z.P., Zeng W.S., Cheng B.L., Luo S.Q.(2005). Reactive oxygen species stimulates receptor activator of NF-κB ligand expression in osteoblast. J. Biol. Chem., 280: 17497–17506.10.1074/jbc.M409332200Search in Google Scholar

Basu S., Michaëlsson K., Olofsson H., Johansson S., Melhus H.(2001). Association between oxidative stress and bone mineral density. Biochem. Biophys. Res. Commun., 288: 275–279.10.1006/bbrc.2001.5747Search in Google Scholar

Blair J.M., Zheng Y., Dunstan C.R.(2007). RANK ligand. Int. J. Biochem. Cell Biol., 39: 1077–1081.10.1016/j.biocel.2006.11.008Search in Google Scholar

Blicharski T., Tomaszewska E., Dobrowolski P., Hułas-Stasiak M., Muszyński S.(2017). A metabolite of leucine (β-hydroxy-β-methylbutyrate) given to sows during pregnancy alters bone development of their newborn offspring by hormonal modulation. PLoS One, 12: e0179693.10.1371/journal.pone.0179693Search in Google Scholar

Blumenthal G.M., Abdel-Rahman A.A., Wilmarth K.R., Friedman M.A., Abou-Donia M.B.(1995). Toxicokinetics of a single 50 mg/kg oral dose of [2,3-14C]acrylamide in White Leghorn hens. Fundam. Appl. Toxicol., 27: 149–153.10.1093/toxsci/27.1.149Search in Google Scholar

Camplejohn K.L., Allard S.A.(1988). Limitations of safranin 'O' staining in proteoglycan-depleted cartilage demonstrated with monoclonal antibodies. Histochemistry, 89: 185–188.10.1007/BF00489922Search in Google Scholar

Carter A.M., Kingston M.J., Han K.K., Mazzuca D.M., Nygard K., Han V.K.(2005). Altered expression of IGFs and IGF-binding proteins during intrauterine growth restriction in guinea pigs. J. Endocrinol., 184: 179–189.10.1677/joe.1.05781Search in Google Scholar

Dauncey M.J., Bicknell R.J.(1999). Nutrition and neurodevelopment: mechanisms of developmental dysfunction and disease in later life. Nutr. Res. Rev., 12: 231–253.10.1079/095442299108728947Search in Google Scholar

Deng X., He G., Levine A., Cao Y., Mullins C.(2008). Adenovirus-mediated expression of TIMP-1 and TIMP-2 in bone inhibits osteolytic degradation by human prostate cancer. Int. J. Cancer, 122: 209–218.10.1002/ijc.23053Search in Google Scholar

Deng Z.H., Li Y.S., Gao X., Lei G.H., Huard J.(2018). Bone morphogenetic proteins for articular cartilage regeneration. Osteoarthritis Cartilage, 26: 1153–1161.10.1016/j.joca.2018.03.007Search in Google Scholar

Duarte-Salles T., von Stedingk H., Granum B., Gützkow K.B., Rydberg P., Törnqvist M., Mendez M.A., Brunborg G., Brantsæter A.L., Meltzer H.M., Alexander J., Haugen M.(2013). Dietary acrylamide intake during pregnancy and fetal growth – results from the Norwegian mother and child cohort study (MoBa). Environ. Health Perspect., 121: 374–379.10.1289/ehp.1205396Search in Google Scholar

EFSA(European Food Safety Authority)(2015). Scientific opinion on acrylamide in food. EFSA J., 13: 4104.10.2903/j.efsa.2015.4104Search in Google Scholar

El-Bakry A.M., Abdul-Hamid M., Allam A.(2013). Prenatal and perinatal exposure of acrylamide disrupts the development of spinal cord in rats. World J. Neurosci., 3: 17–31.10.4236/wjns.2013.31003Search in Google Scholar

EU(European Commission)(2017). Commission Recommendation No 2017/2158 of 20 November 2017 establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. Off. J. EU, L304: 24–44.Search in Google Scholar

Faria M., Ziv T., Gómez-Canela C., Ben-Lulu S., Prats E., Novoa-Luna K.A., Admon A., Piña B., Tauler R., Gómez-Oliván L.M., Raldúa D.(2018). Acrylamide acute neurotoxicity in adult zebrafish. Sci. Rep., 8: 7918.10.1038/s41598-018-26343-2Search in Google Scholar

Garrett I.R., Boyce B.F., Oreffo R.O., Bonewald L., Poser J., Mundy G.R.(1990). Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J. Clin. Invest., 85: 632–639.10.1172/JCI114485Search in Google Scholar

Gomez D.E., Alonso D.F., Yoshiji H., Thorgeirsson U.P.(1997). Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur. J. Cell. Biol., 74: 111–122.Search in Google Scholar

Halle I., Ihling M., Lahrssen-Wiederholt M., Klaffke H., Flachowsky G.(2006). Carry-over of acrylamide from feed (heated potato product) to eggs and body tissues of laying hens. J. Verbr. Lebensm., 1: 290–293.10.1007/s00003-006-0050-1Search in Google Scholar

Hamann N., Zaucke F., Heilig J., Oberländer K.D., Brüggemann G.P., Niehoff A.(2014). Effect of different running modes on the morphological, biochemical, and mechanical properties of articular cartilage. Scand. J. Med. Sci. Sports, 24: 179–188.10.1111/j.1600-0838.2012.01513.xSearch in Google Scholar

He M., Wang J., Wang G., Tian Y., Jiang L., Ren Z., Qiu C., Fu Q.(2016). Effect of glucocorticoids on osteoclast function in a mouse model of bone necrosis. Mol. Med. Rep., 14: 1054–1060.10.3892/mmr.2016.5368Search in Google Scholar

Hu K., Olsen B.R.(2016). Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J. Clin. Invest., 26: 509–526.10.1172/JCI82585Search in Google Scholar

Huang X.J., Choi Y.K., Im H.S., Yarimaga O., Yoon E., Kim H.S.(2006). Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sensors (Basel), 6: 756–782.10.3390/s6070756Search in Google Scholar

Hułas-Stasiak M., Dobrowolski P., Tomaszewska E., Kostro K.(2013). Maternal acrylamide treatment reduces ovarian follicle number in newborn guinea pig offspring. Reprod. Toxicol., 42: 125–131.10.1016/j.reprotox.2013.08.007Search in Google Scholar

Hułas-Stasiak M., Dobrowolski P., Tomaszewska E.(2015). Maternal acrylamide and effects on offspring. In: Acrylamide in food, Gökmen V. (ed). Academic Press, London, UK, pp. 93–107.10.1016/B978-0-12-802832-2.00005-XSearch in Google Scholar

Kienzle E., Ranz D., Thielen C., Jezussek M., Schieberle P.(2005). Carry over (transfer) of feed-borne acrylamide into eggs, muscle, serum, and faeces – a pilot study with Japanese quails. J. Anim. Physiol. Anim. Nutr., 89: 79–84.10.1111/j.1439-0396.2005.00550.xSearch in Google Scholar

Koszucka A., Nowak A., Nowak I., Motyl I.(2019). Acrylamide in human diet, its metabolism, toxicity, inactivation and the associated European Union legal regulations in food industry. Crit. Rev. Food Sci. Nutr., 60: 1677–1692.10.1080/10408398.2019.1588222Search in Google Scholar

Lawson K.A., Dunn N.R., Roelen B.A., Zeinstra L.M., Davis A.M., Wright C.V., Korving J.P., Hogan B.L.(1999). BMP4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev., 13: 424–436.10.1101/gad.13.4.424Search in Google Scholar

Mc Kendry A.A., Palliser H.K., Yates D.M., Walker D.W., Hirst J.J.(2010). The effect of betamethasone treatment on neuroactive steroid synthesis in a foetal guinea pig model of growth restriction. J. Neuroendocrinol., 22: 166–174.10.1111/j.1365-2826.2009.01949.xSearch in Google Scholar

Mojska H., Gielecińska I., Zielińska A., Winiarek J., Sawicki W.(2015). Estimation of exposure to dietary acrylamide based on mercapturic acids level in urine of Polish women post partum and an assessment of health risk. J. Expo. Sci. Environ. Epidemiol., 26: 288–295.10.1038/jes.2015.12Search in Google Scholar

Muszyński S., Tomaszewska E., KwiecieńM., Dobrowolski P., Tomczyk-Warunek A.(2018). Subsequent somatic axis and bone tissue metabolism responses to a low-zinc diet with or without phytase inclusion in broiler chickens. PLoS One, 13: e0191964.10.1371/journal.pone.0191964Search in Google Scholar

Nagata C., Konishi K., Wada K., Tamura T., Goto Y., Koda S., Mizuta F., Iwasa S.(2019). Maternal acrylamide intake during pregnancy and sex hormone levels in maternal and umbilical cord blood and birth size of offspring. Nutr. Cancer, 71: 77–82.10.1080/01635581.2018.1524018Search in Google Scholar

Pabst K., Mathar W., Palavinskas R., Meisel H., Blüthgen A., Klaffke H.(2005). Acrylamide – occurrence in mixed concentrate feed for dairy cows and carry-over into milk. Food Addit. Contam., 22: 210–213.10.1080/02652030500110964Search in Google Scholar

Palliser H.K., Zakar T., Symonds I.M., Hirst J.J.(2010). Progesterone receptor isoform expression in the guinea pig myometrium from normal and growth restricted pregnancies. Reprod. Sci., 7: 776–782.10.1177/1933719110371517Search in Google Scholar

Pan Q., Yu Y., Chen Q., Li C., Wu H., Wan Y., Ma J., Sun F.(2008). Sox9, a key transcription factor of bone morphogenetic protein-2-induced chondrogenesis, is activated through BMP pathway and a CCAAT box in the proximal promoter. J. Cell. Physiol., 217: 228–241.10.1002/jcp.21496Search in Google Scholar

Pedersen M., von Stedingk H., Botsivali M., Agramunt S., Alexander J., Brunborg G., Chatzi L., Fleming S., Fthenou E., Granum B., Gutzkow K.B., Hardie L.J., Knudsen L.E., Kyrtopoulos S.A., Mendez M.A., Merlo D.F., Nielsen J.K., Rydberg P., Segerbäck D., Sunyer J., Wright J., Törnqvist M., Kleinjans J.C., Kogevinas M.(2012). Birth weight, head circumference, and prenatal exposure to acrylamide from maternal diet: the European prospective mother–child study (NewGeneris). Environ. Health Perspect., 120: 1739–1745.10.1289/ehp.1205327Search in Google Scholar

Posey K.L., Coustry F., Veerisetty A.C., Hossain M., Gattis D., Booten S., Alcorn J.L., Seth P.P., Hecht J.T.(2017). Antisense reduction of mutant COMP reduces growth plate chondrocyte pathology. Mol. Ther., 25: 705–714.10.1016/j.ymthe.2016.12.024Search in Google Scholar

Prats E., Gómez-Canela C., Ben-Lulu S., Ziv T., Padrós F., Tornero D., Garcia-Reyero N., Tauler R., Admon A., Raldúa D.(2017). Modelling acrylamide acute neurotoxicity in zebrafish larvae. Sci. Rep., 7: 13952.10.1038/s41598-017-14460-3Search in Google Scholar

Raju J., Roberts J., Taylor M., Patry D., Chomyshyn E., Caldwell D., Cooke G., Mehta R.(2015). Toxicological effects of short-term dietary acrylamide exposure in male F344 rats. Environ. Toxicol. Pharmacol., 39: 85–92.10.1016/j.etap.2014.11.009Search in Google Scholar

Reeves P.G., Nielsen F.H., Fahey Jr.G.C.(1993). AIN-93 Purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr., 123: 1939–1951.10.1093/jn/123.11.1939Search in Google Scholar

Rich L., Whittaker P.(2005). Collagen and picrosirius red staining: a polarized light assessment of fibrillar hue and spatial distribution. Braz. J. Morphol. Sci., 22: 97–104.Search in Google Scholar

Rudyk H., Tomaszewska E., Kotsyumbas I., Muszyński S., Tomczyk-Warunek A., Szymańczyk S., Dobrowolski P., Wiącek D., Kamiński D., Brezvyn O.(2019). Bone homeostasis in experimental fumonisins intoxication of rats. Ann. Anim. Sci., 19: 403–419.10.2478/aoas-2019-0003Search in Google Scholar

Sarocka A., Babosova R., Kovacova V., Omelka R., Semla M., Kapusta E., Goc Z., Formicki G., Martiniakova M.(2017). Acrylamide-induced changes in femoral bone microstructure of mice. Physiol. Res., 66: 1067–1071.10.33549/physiolres.933515Search in Google Scholar

Sarocka A., Kovacova V., Omelka R., Grosskopf B., Kapusta E., Goc Z., Formicki G., Martiniakova M.(2019). Single and simultaneous effects of acrylamide and ethanol on bone microstructure of mice after one remodeling cycle. BMC Pharmacol. Toxicol., 20: 38.10.1186/s40360-019-0317-7Search in Google Scholar

Schneider C.A., Rasband W.S., Eliceiri K.W.(2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods, 9: 671–675.10.1038/nmeth.2089Search in Google Scholar

Seale S.M., Feng Q., Agarwal A.K., El-Alfy A.T.(2012). Neurobehavioral and transcriptional effects of acrylamide in juvenile rats. Pharmacol. Biochem. Behav., 101: 77–84.10.1016/j.pbb.2011.12.006Search in Google Scholar

Sörgel F., Weissenbacher R., Kinzig-Schippers M., Hofmann A., Illauer M., Skot A., Landersdorfer C.(2002). Acrylamide: increased concentrations in homemade food and first evidence of its variable absorption from food, variable metabolism and placental and breast milk transfer in humans. Chemotherapy, 48: 267–274.10.1159/000069715Search in Google Scholar

Suvara S.K., Layton C., Bancroft J.D.(2013). Bancroft’s theory and practice of histological techniques. 7th ed. Edinburgh, UK, Churchill Livingstone, 654 pp.Search in Google Scholar

Śliwa E., Dobrowolski P., Tatara M.R., Piersiak T., Siwicki A., Rokita E., Pierzynowski S.G.(2009). Alpha-ketoglutarate protects the liver of piglets exposed during prenatal life to chronic excess of dexamethasone from metabolic and structural changes. J. Anim. Physiol. Anim. Nutr., 93: 192–202.10.1111/j.1439-0396.2007.00805.xSearch in Google Scholar

Tomaszewska E., Dobrowolski P., Wydrych J.(2012). Postnatal administration of 2-oxoglutaric acid improves articular and growth plate cartilages and bone tissue morphology in pigs prenatally treated with dexamethasone. J. Physiol. Pharmacol., 63: 547–554.Search in Google Scholar

Tomaszewska E., Dobrowolski P., Puzio I.(2013). Morphological changes of the cartilage and bone in newborn piglets evoked by experimentally induced glucocorticoid excess during pregnancy. J. Anim. Physiol. Anim. Nutr., 97: 785–796.10.1111/j.1439-0396.2012.01319.xSearch in Google Scholar

Tomaszewska E., Dobrowolski P., Puzio I., ProstŁ., Kurlak P., Sawczuk P., Badzian B., Hulas-Stasiak M., Kostro K.(2014). Acrylamide-induced prenatal programming of intestine structure in guinea pig. J. Physiol. Pharmacol., 65: 107–115.Search in Google Scholar

Tomaszewska E., Dobrowolski P., KwiecieńM.(2017a). Alterations in intestinal and liver histomorphology and basal hematological and biochemical parameters in relation to different sources of dietary copper in adult rats. Ann. Anim. Sci., 17: 447–490.10.1515/aoas-2016-0056Search in Google Scholar

Tomaszewska E., Dobrowolski P., KwiecieńM., Winiarska-Mieczan A., Tomczyk A., Muszyński S., Gładyszewska B.(2017b). Dose-dependent influence of dietary Cu-glycine complex on bone and hyaline cartilage development in adolescent rats. Ann. Anim. Sci., 17: 1089–1105.10.1515/aoas-2017-0022Search in Google Scholar

Tomaszewska E., Muszyński S., Dobrowolski P., Winiarska-Mieczan A., KwiecieńM., Tomczyk-Warunek A., Ejtel M., Świetlicka I., Gładyszewska B.(2018). White tea is more effective in preservation of bone loss in adult rats co-exposed to lead and cadmium compared to black, red or green tea. Ann. Anim. Sci., 18: 937–953.10.2478/aoas-2018-0026Search in Google Scholar

Tomaszewska E., Muszyński S., Dobrowolski P., Wiącek D., Tomczyk-Warunek A., Świetlicka I., Pierzynowski S.G.(2019). Maternal HMB treatment affects bone and hyaline cartilage development in their weaned piglets via the leptin/osteoprotegerin system. J. Anim. Physiol. Anim. Nutr., 103: 626–643.10.1111/jpn.13060Search in Google Scholar

Tyla R.W., Friedman M.A.(2003). Effects of acrylamide on rodent reproductive performance. Reprod. Toxicol., 17: 1–13.10.1016/S0890-6238(02)00078-3Search in Google Scholar

Tyla R.W., Friedman M.A., Losco P.E., Fisher L.C., Johnson K.A., Strother D.E., Wolf C.H.(2000). Rat two-generation reproduction and dominant lethal study of acrylamide in drinking water. Reprod. Toxicol., 14: 385–401.10.1016/S0890-6238(00)00097-6Search in Google Scholar

Wang R.N., Green J., Wang Z., Deng Y., Qiao M., Peabody M., Zhang Q., Ye J., Yan Z., Denduluri S., Idowu O., Li M., Shen C., Hu A., Haydon R.C., Kang R., Mok J., Lee M.J., Luu H.L., Shi L.L.(2014). Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis., 1: 87–105.10.1016/j.gendis.2014.07.005Search in Google Scholar

WHO(World Health Organization)(2002). Joint FAO/WHO consultation on health implications of acrylamide in food. WHO Headquarters, Geneva, Switzerland, 25–27.06.2002, https://apps.who.int/iris/handle/10665/42563Search in Google Scholar

Winnicka A.(2015). Reference values of basic laboratory tests in veterinary science (in Polish). 6th ed., SGGW, Warszawa, 148 pp.Search in Google Scholar

Wong M., Siegrist M., Cao X.(1999). Cyclic compression of articular cartilage explants is associated with progressive consolidation and altered expression pattern of extracellular matrix proteins. Matrix Biol., 18: 391–399.10.1016/S0945-053X(99)00029-3Search in Google Scholar

Yu D., Xie X., Qiao B., Ge W., Gong L., Luo D., Zhang D., Li Y., Yang B., Kuang H.(2019). Gestational exposure to acrylamide inhibits mouse placental development in vivo. J. Hazard. Mater., 367: 160–170.10.1016/j.jhazmat.2018.12.061Search in Google Scholar

Zehentner B.K., Dony C., Burtscher H.(1999). The transcription factor Sox9 is involved in BMP-2 signaling. J. Bone Miner. Res., 14: 1734–1741.10.1359/jbmr.1999.14.10.1734Search in Google Scholar

Zoppini G., Cacciatori V., Negri C., Stoico V., Lippi G., Targher G., Bonora E.(2016). The aspartate aminotransferase-to-alanine aminotransferase ratio predicts all-cause and cardiovascular mortality in patients with type 2 diabetes. Medicine (Baltimore), 95: e4821.10.1097/MD.0000000000004821Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine