Open Access

Replacement of Fish Meal by Solid State Fermented Lupin (Lupinus albus) Meal with Latobacillus plantarum 299v: Effect on Growth and Immune Status of Juvenile Atlantic Salmon (Salmo salar)


Cite

Abu-Elala N.M., & Ragaa N.M. (2015). Eubiotic effect of a dietary acidifier (potassium diformate) in the health status of cultured Oreochromis niloticus. J. Adv. Res, 6: 621–629.10.1016/j.jare.2014.02.008Search in Google Scholar

Acar U., Kesbic O.S., Yilmaz S., & Karabayir A. (2018). Growth performance, hematological and serum biochemical profiles in rainbow trout (Oncorhynchus mykiss) fed varying levels of lupin (Lupinus albus) meal. Aquac. Res, 49: 2579–2586.10.1111/are.13724Search in Google Scholar

Al-Thobaiti A., Al-Ghanim K., Suliman E.M., &Mahboob S. (2017). Impact of replacing fish meal by a mixture of different plant protein sources on the growth performance of Nile tilapia (Oreochromis niloticus L.) diets. Braz. J. Biol., 78(3): online. http://dx.doi.org/10.1590/1519-6984.17223010.1590/1519-6984.17223029069165Search in Google Scholar

AOAC (1995). Official Methods of Analysis of the Association of Analytical Chemist. 16th Edition. AOAC: Washington, DC. 1018 pp.Search in Google Scholar

Baruah K., Sahu N.P., Pal A.K., Jain K.K., Debnath D., Mukherjee S.C. (2007). Dietary microbial phytase and citric acid synergistically enhances nutrient digestibility and growth performance of Labeo rohita (Hamilton) juveniles at sub-optimal protein level. Aquac. Res., 38(2): 109 – 120.10.1111/j.1365-2109.2006.01624.xSearch in Google Scholar

Bonaldo A., Parma L., Mandrioli L., Sirri R., Fontanillas R., Badiani A., Gatta P.P. (2011). Increasing dietary plant proteins affect growth performance and ammonia excretion but not digestibility and gut histology in turbot (Psetta maxima) juveniles. Aquaculture, 318(1-2): 101 – 108.10.1016/j.aquaculture.2011.05.003Search in Google Scholar

Bransden M.P., Carter C.G., & Nowak B.F. (2001). Effect of dietary protein source on growth, immune function, blood chemistry and disease resistance of Atlantic salmon (Salmo salar L.) parr. Anim. Sci., 73(1): 105 – 113.10.1017/S1357729800058100Search in Google Scholar

Castillo S., Rosales M., Pohlenz C., Gatlin III, D.M. (2014). Effects of organic acids on growth performance and digestive enzyme activities of juvenile red drum Sciaenops ocellatus. Aquaculture, 433: 6 – 12.10.1016/j.aquaculture.2014.05.038Search in Google Scholar

Chi C-H., & Cho S-J. (2016). Improvement of bioactivity of soybean meal by solid-state fermentation with Bacillus amyloliquefaciens versus Lactobacillus spp. and Saccharomyces cerevisiae. LWT-Food Sci. Tech., 68: 619 – 625.10.1016/j.lwt.2015.12.002Search in Google Scholar

Cizeikiene D., Juodeikiene G., & Damasius J. (2018). Use of wheat straw biomass in production of L-lactic acid applying biocatalysts and combined lactic acid bacteria strains belonging to the genus Lactobacillus. Biocatal. Agri. Biotechnol., 15: 185 – 191.10.1016/j.bcab.2018.06.015Search in Google Scholar

Cunha S.C., Ferreira I.M.P.L.V.O., Fernandes J.O., Faria M.A., Beatriz M., Oliveira P.P., & Ferreira M. A. (2001). Determination of lactic, acetic, succinic, and citric acids in table olives by HPLC/UV. J. Liq. Chromatogr. R. T., 24(7): 1029 – 1038.10.1081/JLC-100103429Search in Google Scholar

Dai C., Ma H., He R., Huang L., Zhu S., Ding Q., & Luo L. (2017). Improvement of nutritional value and bioactivity of soybean meal by solid-state fermentation with Bacillus subtilis. LWT, 86: 1 – 7.10.1016/j.lwt.2017.07.041Search in Google Scholar

Fu W., & Mathews A.P. (1999). Lactic acid production from lactose by Lactobacillus plantarum: kinetic model and effects of pH, substrate and oxygen. Biochem. Eng. J., 3(3): 163 – 170.10.1016/S1369-703X(99)00014-5Search in Google Scholar

Fuentes-Quesada J., Viana M.T., Rombenso A.N., Guerrero-Rentería Y., Nomura-Solís M., Gómez-Calle V., Lazo J.P., Mata-Sotres J.A. (2018). Enteritis induction by soybean meal in Toaba macdonaldi diets: Effects on growth performance, digestive capacity, immune response and distal intestine integrity. Aquaculture, 495: 78 – 89.10.1016/j.aquaculture.2018.05.025Search in Google Scholar

Furukawa A. & Tsukahara H. (1996). On the acid digestion method for the determination of chromic oxide as an index substance in the study of digestibility of fish feed. Bulleting of. Jpn. Soc. Sci. Fish., 32(3): 502–506.10.2331/suisan.32.502Search in Google Scholar

Gatlin III D.M., Barrows F.T., Brown P., Dabrowsky K., Gaylord T.G., Hardy R.W., …Wurtele, E. (2007). Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquac. Res., 38(6): 551-579.10.1111/j.1365-2109.2007.01704.xSearch in Google Scholar

Gao X., Zhang M., Li X., Han Y., Wu F., & Liu Y. (2018). The effects of feeding Lactobacillus pentosus on growth, immunity, and disease resistance in Haliotis discus hannai Ino. Fish Shellfish Immun., 78: 42 – 51.10.1016/j.fsi.2018.04.010Search in Google Scholar

Giri S.S., Sukumaran V., & Oviya M. (2013). Potential probiotic Lactobacillus plantarum VSG3 improves the growth, immunity, and disease resistance of tropical freshwater fish, Labeo rohita). Fish Shellfish Immunol., 34(2): 660 – 666.10.1016/j.fsi.2012.12.008Search in Google Scholar

Gislason G., Olsen R.E., Hinge E. (1996). Comparative effects of dietary Na+ - lactate on Artic char, Salvelinus alpinus L., and Atlantic salmon, Salmo salar L. Aquac. Res., 27(6): 429 – 435.10.1111/j.1365-2109.1996.tb01272.xSearch in Google Scholar

Glencross D.B., Boujard T., & Kaushik S.J. (2003). Influence of oligosaccharides on the digestibility of lupin meals when fed to rainbow trout, Oncorhynchus mykiss. Aquaculture, 219(1-4):703-713.10.1016/S0044-8486(02)00664-6Search in Google Scholar

Hang Y.D., Luh B.S., & Woodams E.E. (1987). Microbial production of Citric Acid by Solid State Fermentation of Kiwifruit Peel. J. Food Sci., 52(1): 226 – 227.10.1111/j.1365-2621.1987.tb14014.xSearch in Google Scholar

Hansen A-C., Roselund G., Karlsen O., Olsvik P.A., & Hemre G-I. (2006). The inclusion of plant protein in cod diets, its effects on macronutrient digestibility, gut and liver histology and heat shock protein transcription. Aquac. Res., 37(8): 773 – 78410.1111/j.1365-2109.2006.01490.xSearch in Google Scholar

He W., Rahimnejad S., Wang L., Song K., Lu K., & Zhang C. (2017). Effects of organic acid and essential oils blend on growth, gut microbiota, immune response and disease resistance of Pacific white shrimp (Litopenaeus vannamei) against Vibrio parahaemolyticus. Fish Shellfish Immun., 70: 164 – 173.10.1016/j.fsi.2017.09.007Search in Google Scholar

Ho V.T.T., Fleet G.H., & Zhao J. (2018). Unravelling the contribution of lactic acid bacteria and acetic acid bacteria to coca fermentation using inoculating organisms. Intl. J. Food Microbiol., 279: 43 – 56.10.1016/j.ijfoodmicro.2018.04.040Search in Google Scholar

Johansen, R., Needham, J.R., Colquhoun, D.J., Poppe, T.T. & Smith, J. (2006) Guidelines for health and welfare monitoring of fish use in research. Laboratory Animals, 40(4), 323-340.10.1258/00236770677847645117018205Search in Google Scholar

Katya K., Park G., Bharadwaj A.S., Browdy C., Vazquez-Anon M., & Bai S.C. (2018). Organic acids blend as dietary antibiotic replacer in marine fish olive flounder, Paralichthys olivaceus. Aquac. Res., 49(8): 2861 – 2868.10.1111/are.13749Search in Google Scholar

Khajepour F., & Hosseini S.A. (2012). Citric acid improves growth performance and phosphorous digestibility in Beluga (Huso huso) fed diets where soybean meal partly replaced fish meal. Anim. Feed Sci. Tech., 171(1): 68 – 73.10.1016/j.anifeedsci.2011.10.001Search in Google Scholar

Koh C-B., Romano N., Zahrah A.S., & Ng W-K (2016). Effects of dietary organic acid blend and oxytetracycline on the growth, nutrient utilization and total cultivable gut microbiota of the red hybrid tilapia, Oreochromis sp., and resistance to Streptococcus agalactiae. Aquac. Res., 47(2): 357 – 369.10.1111/are.12492Search in Google Scholar

Li C., Zhang G.F., Mao X., Wang J.Y., Duan C.Y., Wang Z.J. & Liu L.B. (2016). Growth and acid production of Lactobacillus delbrueckii spp. Bulgaricus ATCC 11842 in the fermentation of algal carcass. J. Dairy Sci., 99(6): 4243 – 4250.10.3168/jds.2015-10700Search in Google Scholar

Liong M.T., & Shah N.P. (2005). Production of organic acids from fermentation of mannitol, fructooligosaccharide and inulin by a cholesterol removing Lactobacillus acidophilus strain. J. Applied Microbiol., 99(4): 783 – 793.10.1111/j.1365-2672.2005.02677.xSearch in Google Scholar

Liu W., Yang Y., Zhang J., Gatlin D.M., Ringo E., Zhou Z. (2014). Effects of dietary microencapsulated sodium butyrate on growth, intestinal mucosal morphology, immune response, and adhesive bacteria in juvenile common carp (Cyprinus carpio) pre-fed with or without oxidized oil. Brit. J. Nutr., 112: 15 – 29.10.1017/S0007114514000610Search in Google Scholar

Luckstadt C. (2008). The use of acidifiers in fish nutrition. CAB Reviews: Perspectives in Agri. Vet. Sci., Nutr. and Nat. Res., 3(44): 1 – 8.10.1079/PAVSNNR20083044Search in Google Scholar

Mladenovic D., Pejin J., Kocic-Tanackov S., Radovanovic Z., Djukic-Vukovic A., Mojovic L. (2018). Lactic acid production on molasses enriched potato stillage by Lactobacillus paracasei immobilized on fish agro-industrial waste supports. Ind. Crop. Prod., 124: 142 – 148.10.1016/j.indcrop.2018.07.081Search in Google Scholar

Moniruzzaman M., Bae J.H., Won S.H., Cho S.J., Chang K.H., & Bai S.C. (2017). Evaluation of solid-state fermented protein concentrates as a fish meal replacer in the diets of juvenile rainbow trout Oncorhynchus mykiss. Aquac. Nutr., 24(4): 1198 – 1212.10.1111/anu.12658Search in Google Scholar

Ng W-K., & Koh C.B. (2016). The utilization and mode of action of organic acids in the feeds of cultured aquatic animals. Rev. Aquacult., 9(4): 342 – 368.10.1111/raq.12141Search in Google Scholar

Ng W-K., Koh C-B., Teoh C-T., Romano N. (2015). Farm-raised shrimp, Penaeus monodon, fed commercial feeds with added organic acids showed enhanced nutrient utilization, immune response and resistance to Vibrio harveyi challenge. Aquaculture, 449(1): 69 – 77.10.1016/j.aquaculture.2015.02.006Search in Google Scholar

Oude-Elferink S.J.W.H., Krooneman J., Gottschal J.C., Spoelstra S.F., Faber F., Driehuis F. (2001). Aerobic conversion of Lactic Acid to Acetic Acid and 1,2-Propaneidol by Lactobacillus buchneri. Appl. Environ. Microb., 67(1): 125 – 132.10.1128/AEM.67.1.125-132.2001Search in Google Scholar

Panigrahi A., Kiron V., Kobayashi T., Puangkaew J., Satoh S., & Sugita H. (2004). Immune responses in rainbow trout Oncorhynchus mykiss induced by a potential probiotic bacteria Lactobacillus rhamnosus JCM 1136. Vet. Immunol. Immunop., 102(4): 379 – 388.10.1016/j.vetimm.2004.08.006Search in Google Scholar

Pandey A. (2003). Solid-state fermentation. Biochem. Eng. J., 13(2-3): 81 – 84.10.1016/S1369-703X(02)00121-3Search in Google Scholar

Pandey A., & Satoh S. (2008). Effects of organic acids on growth and phosphorous utilization in rainbow trout Oncorhynchus mykiss. Fish. Sci., 74(4): 867 – 874.10.1111/j.1444-2906.2008.01601.xSearch in Google Scholar

Parry R.M., Chandan R.C., & Shahani K.M. (1965). A rapid and sensitive assay of muramidase. P. Soc. Exp. Biol., 119(2): 301 – 306.10.3181/00379727-119-30188Search in Google Scholar

Pranoto Y., Anggrahini S., & Efendi Z. (2013). Effect of natural and Lactobacillus plantarum fermentation on in-vitro protein and starch digestibilities of sorghum flour. Food Biosci., 2: 46 – 52.10.1016/j.fbio.2013.04.001Search in Google Scholar

Rahimnejad S., Lu K., Wang L., Song K., Mai K., Davis D.A., Zhang C. (2019). Replacement of fish meal with Bacillus pumillus SE5 and Pseudpzyma aphidis ZR1 fermented soybean meal in diets for Japanese seabass (Lateolabrax japonicus). Fish & Shellfish Immunol., 84: 987 – 997.10.1016/j.fsi.2018.11.009Search in Google Scholar

Ray M., (2001). Effect of fermentation on the nutritive value of sesame seed meal in the diets for rohu, Labeo rohita (Hamilton), fingerlings. Aquac. Nutr., 5(4): 229 – 236.10.1046/j.1365-2095.1999.00101.xSearch in Google Scholar

Ringo E. (1991). Effects of dietary lactate and propionate on growth and ingesta in Arctic charr, Salvelinus alpinus (L.). Aquac., 96(3-4): 321 – 333.10.1016/0044-8486(91)90161-YSearch in Google Scholar

Ringo E., Olsen R.E., & Castell J.D. (1994). Effect of dietary lactate on growth and chemical composition of Artic Charr Salvelinus alpinus. J. World Aquacult. Soc., 25(3): 483 – 486.10.1111/j.1749-7345.1994.tb00234.xSearch in Google Scholar

Romano N., Koh C-B., & Ng W-K. (2015). Dietary microencapsulated organic acids blend enhances growth, phosphorous utilization, immune response, hepatopancreatic integrity and resistance against Vibrio harveyi in white shrimp, Litopenaeus vannamei. Aquaculture, 435: 228 - 236.10.1016/j.aquaculture.2014.09.037Search in Google Scholar

Saez P., Borquez A., Dantagnan P., & Hernández A. (2015) Effects of de-hulling, steam-cooking and microwave-irradiation in digestive value of white lupin (Lupinus albus) seed meal for rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Arch. Anim. Nutri., 69 (2): 143 – 157.10.1080/1745039X.2015.100961325708530Search in Google Scholar

Sakai M., Kobayashi M., & Kawauchi H. (1996). In vitro activation of fish phagocytosis cells by GH, prolactina and somatolactin. J. Endocrinol., 151(1): 113 – 118.10.1677/joe.0.1510113Search in Google Scholar

Salini M.J., & Adams L.R. (2014). Growth performance, nutrient utilization and digestibility by Atlantic salmon (Salmo salar) fed Tasmanian grown white (Lupinus albus) and narrow-leafed (L. angustifolius) lupins. Aquaculture., 426-427: 296 – 303.10.1016/j.aquaculture.2014.02.020Search in Google Scholar

Sarker M.S.A., Satoh S., Kamata K., Haga Y., & Yamamoto Y. (2011). Partial replacement of fish meal with plant protein sources using organic acids to practical diets for juvenile yellowtail, Seriola quinqueradiata. Aquacult. Nutr., 18(1): 81 – 89.10.1111/j.1365-2095.2011.00880.xSearch in Google Scholar

Shiu Y-L., Hsieh S-L., Guei W-C., Tsai Y-T., Chiu C-H., & Liu C-H. (2013). Using Bacillus substilis E20-fermented soybean meal as replacement for fish meal in the diet of orange-spotted grouper (Epinephelus coioides, Hamilton). Aquacult. Res., 46(6): 1403 – 1416.10.1111/are.12294Search in Google Scholar

Smith D.M., Tabrett S.J., Glencross B.D., Irvin S.J., Barclay M.C. (2007). Digestibility of lupin kernel meals in feeds for the black tiger shrimp, Penaeus monodon. Aquaculture, 264(1-4). 353 – 362.10.1016/j.aquaculture.2006.12.002Search in Google Scholar

Smit G., Smit B.A., & Engels W.J. (2005). Flavor formation by lactic acid bacteria and biochemical flavor profiling of cheese products. FEMS of Microbiol. Rev., 29(3): 591 – 610.10.1016/j.fmrre.2005.04.002Search in Google Scholar

Sharawy Z., Goda A. M. A. S., & Hassaan M. S. (2016). Partial or total replacement of fish meal by solid state fermented soybean meal with Saccharomyces cerevisiae in diets for Indian prawn shrimp, Fenneropenaeus indicus, postlarvae. Anim. Feed Sci. Tech., 212: 90 – 99.10.1016/j.anifeedsci.2015.12.009Search in Google Scholar

Soccol C.R., Scopel-Ferreira da Costa E., Junior-Letti J.A., Karp S.G., Woiciechowski A.L., Porto de Souza-Vandenberghe L. (2017). Recent developments and innovations in solid state fermentation. Biotech. Res. Innov., 1(1): 52 – 71.10.1016/j.biori.2017.01.002Search in Google Scholar

Srisukchayakul P., Charalampopoulos D., Karatzas K. (2018). Study on the effect of citric acid adaptation toward the subsequent survival of Lactobacillus plantarum NCIMB 8826 in low pH fruit juices during refrigerated storage. Food Res. Intl., 111: 198 – 204.10.1016/j.foodres.2018.05.018Search in Google Scholar

Su, X., Li X., Leng X., Tan C., Liu B., Chai X., Guo T. (2014). The improvement of growth, digestive enzyme activity and disease resistance of white shrimp by the dietary citric acid. Aquacult. Intl., 22(6): 1823 – 1835.10.1007/s10499-014-9785-3Search in Google Scholar

Sugiura S.H., Roy P.K., Ferraris R.P. (2006). Dietary acidification enhances phosphorous digestibility but decreases H+ / K+ - ATPase expression in rainbow trout. J. Exp. Biol., 209: 3719 – 3728.10.1242/jeb.02436Search in Google Scholar

Sun H., Tang J-W., Yao X-H., Wu Y-F., Wang X., Liu Y., & Lou B. (2015). Partial substitution of fish meal with fermented cottonseed meal in juvenile black sea bream (Acanthopagrus schlegelii) diets. Aquacult., 446: 30 – 36.10.1016/j.aquaculture.2015.04.020Search in Google Scholar

Tabrett S., Blyth D., Bourne N., & Glencross B. (2012). Digestibility of Lupinus albus lupin meals in barramundi (Lates calcarifer). Aquacult., 364-365: 1 – 5.10.1016/j.aquaculture.2012.07.024Search in Google Scholar

Tacon A.G.J., & Metian M. (2015). Feed matters: satisfying the feed demand of aquaculture. Reviews in Fish. Sci. Aquacult., 23: 1 – 10.10.1080/23308249.2014.987209Search in Google Scholar

Vandenberghe L.P.S., Karp S.G., de Oliveira P.Z., de Carvalho J.C., Rodrigues C., & Soccol C.R. (2018). Chapter 18-Solid-State fermentation for the production of organic acids. In: Current Developments in Biotechnology and Bioengineering. Current advances in Solid-State Fermentation (Pandey, A., Larroche, C., & Soccol C.R. eds), pp 415 – 434. Elsevier. Langford Lane, Kidlington, UK.10.1016/B978-0-444-63990-5.00018-9Search in Google Scholar

Van-Doan H., Doolgindachbaporn S., & Suksri A. (2014). Effects of low molecular weight agar and Lactobacillus plantarum on growth performance, immunity, and disease resistance of basa fish (Pangasius bocourti, Sauvage 1880). Fish & Shellfish Immun., 41(2): 340 – 345.10.1016/j.fsi.2014.09.015Search in Google Scholar

Vielma J., & Lall S.P. (2006). Dietary formic acid enhanced apparent digestibility of minerals in rainbow trout, Oncorhynchus mykiss (Walbaum). Aquacult. Nutr., 3(4): 265 – 268.10.1111/j.1365-2095.1997.00041.xSearch in Google Scholar

Vo B.V., Bui D.P., Nguyen H.Q., & Fotedar R. (2015). Optimized fermented lupin (Lupinus angustifolius) inclusion in juvenile barramundi (Lates calcarifer) diets. Aquaculture, 444: 62 – 69.10.1016/j.aquaculture.2015.03.019Search in Google Scholar

Wang J.-h., Guo H., Zhang T-r., Wang H., Liu B-n., & Xiao S. (2016a). Growth performance and digestion improvement of juvenile sea cucumber Apostichopus japonicus fed by solid-state fermentation diet. Aquacult. Nutr., 23(6): 1312 – 1318.10.1111/anu.12506Search in Google Scholar

Wang L., Zhou H., He R., Xu W., Mai K., & He G. (2016b). Effect of soybean meal fermentation by Lactobacillus plantarum P8 on growth, immune responses, and intestinal morphology in juvenile turbot (Scophthalmus maximus L.). Aquaculture, 464: 87 – 94.10.1016/j.aquaculture.2016.06.026Search in Google Scholar

Xia Y., Lu M., Chen G., Cao J., Gao F., Wang M., Yi M. (2018). Effects of dietary Lactobacillus rhamnosus JMC1136 and Lactococcus lactis subs. Lactis JCM5805 on the growth, intestinal microbioita, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus. Fish & Shellfish Immun., 76: 368 – 379.10.1016/j.fsi.2018.03.020Search in Google Scholar

Yin G., Jeney G., Racz T., Pao X., & Jeney Z. (2006). Effect of two Chinese herbs (Astragalus radix and Scutellaria radix) on non-specific immune response of tilapia, Oreochromis niloticus. Aquaculture, 253(1-4): 39 – 47.10.1016/j.aquaculture.2005.06.038Search in Google Scholar

Yu L., Zhai Q., Zhu J., Zhang C., Li, T. ... Chen W. (2017). Dietary Lactobacillus plantarum supplementation enhances growth performance and alleviates aluminum toxicity in tilapia. Ecotox. Environ. Safe., 143: 307 – 314.10.1016/j.ecoenv.2017.05.023Search in Google Scholar

Zhang C., Rahimnejad S., Wang Y., Lu K., Song K., Wang L., & Mai K. (2018). Substituting fish meal with soybean meal in diets for Japanese seabass (Lateolabrax japonicus): Effects on growth, digestive enzymes activity, gut histology, and expression of gut inflammatory and transporter genes. Aquaculture, 483: 173 – 182.10.1016/j.aquaculture.2017.10.029Search in Google Scholar

Zhang T.S., Shi Y., Zhang S.L., Shang W., Gao X.Q., & Wang H.K. (2014). Whole soybean as probiotic lactic acid bacteria carrier food in solid-state fermentation. Food Control, 41. 1 – 6.10.1016/j.foodcont.2013.12.026Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine