Cite

Angelova M., Asenova S., Nedkova V., Koleva-Kolarova R. (2011). Copper in the human organism. Trakia J. Sci., 9: 88–98.Search in Google Scholar

Aoki T. (2004). Copper deficiency and the clinical practice. Japan Med. Assoc. J., 47: 365–370.10.5124/jkma.2004.47.4.370Search in Google Scholar

Balevska P.S., Russanov E.M., Kassabova T.A. (1981). Studies on lipid peroxidation in rat liver by copper deficiency. Int. J. Biochem., 13: 489–493.10.1016/0020-711X(81)90122-1Search in Google Scholar

Bhattacharjee A., Chakraborty K., Shukla A. (2017). Cellular copper homeostasis: current concepts on its interplay with glutathione homeostasis and its implication in physiology and human diseases. Metallomics, 10: 1376–1388.10.1039/C7MT00066ASearch in Google Scholar

Bjorklund G. (2013). The role of zinc and copper in autism spectrum disorders. Acta Neurobiol. Exp. (Wars)., 73: 225–236.Search in Google Scholar

Bost M., Houdart S., Oberli M., Kalonji E., Huneau J.F., Margaritis I. (2016). Dietary copper and human health: Current evidence and unresolved issues. J. Trace Elem. Med. Biol., 35: 107–115.10.1016/j.jtemb.2016.02.006Search in Google Scholar

Brewer G.J. (2010). Risks of copper and iron toxicity during aging in humans. Chem. Res. Toxicol., 23: 319–326.10.1021/tx900338dSearch in Google Scholar

Cakatay U., Telci A., Kayalì R., Tekeli F., Akçay T., Sivas A. (2001). Relation of oxidative protein damage and nitrotyrosine levels in the aging rat brain. Exp. Gerontol., 36: 221–229.10.1016/S0531-5565(00)00197-2Search in Google Scholar

Carmody R.J., Cotter T.G. (2000). Oxidative stress induces caspase-independent retinal apoptosis in vitro. Cell Death Differ., 7: 282–291.10.1038/sj.cdd.4400646Search in Google Scholar

Chauhan A., Sheikh A.M., Chauhan V. (2008). Increased copper-mediated oxidation of membrane phosphatidylethanolamine in autism. Am. J. Biochem. Biotechnol., 4: 95–100.10.3844/ajbbsp.2008.95.100Search in Google Scholar

Chen Y., Saari J., Kang Y. (1994). Weak antioxidant defenses make the heart a target for damage in copper-deficient rats. Free Radic. Biol. Med., 17: 529–536.10.1016/0891-5849(94)90092-2Search in Google Scholar

Chen Z., Meng H., Xing G., Chen C., Zhao Y., Jia G., Wang T., Yuan H., Ye C., Zhao F., Chai Z., Zhu C., Fang X., Ma B., Wan L. (2006). Acute toxicological effects of copper nanoparticles in vivo. Toxicol. Lett., 163: 109–120.10.1016/j.toxlet.2005.10.003Search in Google Scholar

Cholewińska E., Juśkiewicz J., Ognik K. (2018 a). Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the metabolic and immune status in a rat model. J. Trace Elem. Med. Biol., 48: 111–117.10.1016/j.jtemb.2018.03.01729773169Search in Google Scholar

Cholewińska E., Fotschki B., Juśkiewicz J., Rusinek-Prystupa E., Ognik K. (2018 b). The effect of copper level in the diet on the distribution, and biological and immunological responses in a rat model. J. Anim. Feed Sci., 27: 349–360.10.22358/jafs/99893/2018Search in Google Scholar

Cholewińska E., Ognik K., Fotschki B., Zduńczyk Z., Juśkiewicz J. (2018 c). Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the copper biodistribution and gastrointestinal and hepatic morphology and function in a rat model. PLoS One, 13: e0197083.10.1371/journal.pone.0197083595154629758074Search in Google Scholar

Cichoż-Lach H., Michalak A. (2014). Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol., 20: 8082–8091.10.3748/wjg.v20.i25.8082Search in Google Scholar

Di Nicolantonio J.J., Mangan D., O‘Keefe J.H. (2018). Copper deficiency may be a leading cause of ischaemic heart disease. Open Heart, 5: e000784.10.1136/openhrt-2018-000784Search in Google Scholar

Dubick M.A., Barr J.L., Keen C.L., Atkins J.L. (2015). Ceruloplasmin and hypoferremia: studies in burn and non-burn trauma patients. Antioxidants (Basel), 4: 153–169.10.3390/antiox4010153Search in Google Scholar

El Meskini R., Crabtree K.L., Cline L.B., Mains R.E., Eipper B.A., Ronnett G.V. (2007). ATP7A (Menkes protein) functions in axonal targeting and synaptogenesis. Mol. Cell. Neurosci., 34: 409–421.10.1016/j.mcn.2006.11.018Search in Google Scholar

Fossati P., Prencipe L., Berti G. (1980). Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin Chem., 26: 227–231.10.1093/clinchem/26.2.0227Search in Google Scholar

Fotschki B., Jurgoński A., Fotschki J., Majewski M., Ognik K., Juśkiewicz J. (2019). Dietary chicory inulin-rich meal exerts greater healing effects than fructooligosaccharides preparation in rats with trinitrobenzenesulfonic acid-induced necrotic colitis. Pol. J. Food Nutr. Sci., 69: 147–155.10.31883/pjfns-2019-0013Search in Google Scholar

Gaetke L.M., Chow C.K. (2003). Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology, 189: 147–163.10.1016/S0300-483X(03)00159-8Search in Google Scholar

Gaetke L.M., Chow-Johnson H.S., Chow C.K. (2014). Copper: toxicological relevance and mechanisms. Arch. Toxicol., 88: 1929–1938.10.1007/s00204-014-1355-ySearch in Google Scholar

Gamez P., Caballero A.B. (2015). Copper in Alzheimer’s disease: Implications in amyloid aggregation and neurotoxicity. AIP Advances, 5: 092503.10.1063/1.4921314Search in Google Scholar

Gürler H.Ş., Bilgici B., Akar A.K., Tomak L., Bedir A. (2014). Increased DNA oxidation (8-OHdG) and protein oxidation (AOPP) by low level electromagnetic field (2.45 GHz) in rat brain and protective effect of garlic. Int. J. Radiat. Biol., 90: 892–896.10.3109/09553002.2014.922717Search in Google Scholar

Gybina A.A., Tkac I., Prohaska J.R. (2009). Copper deficiency alters the neurochemical profile of developing rat brain. Nutr. Neurosci., 12: 114–122.10.1179/147683009X423265Search in Google Scholar

Hellman N.E., Gitlin J.D. (2002). Ceruloplasmin metabolism and function. Annu. Rev. Nutr., 22: 439–458.10.1146/annurev.nutr.22.012502.114457Search in Google Scholar

Höhn T.J., Grune T. (2014). The proteasome and the degradation of oxidized proteins: part III – Redox regulation of the proteasomal system. Redox Biol., 14: 388–394.10.1016/j.redox.2013.12.029Search in Google Scholar

Hordyjewska A., Popiołek Ł., Kocot J. (2014). The many “faces” of copper in medicine and treatment. Biometals., 27: 611–621.10.1007/s10534-014-9736-5Search in Google Scholar

Huster D. (2010). Wilson disease. Best Pract. Res. Cl. Ga., 24: 531–539.10.1016/j.bpg.2010.07.014Search in Google Scholar

Jaiser S.R., Winston G.P. (2010). Copper deficiency myelopathy. J. Neurol., 257: 869–881.10.1007/s00415-010-5511-xSearch in Google Scholar

Johnson W.M., Wilson-Delfosse A.L., Mieyal J.J. (2012). Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients, 4: 1399–1440.10.3390/nu4101399Search in Google Scholar

Jursa T., Smith D.R. (2008). Ceruloplasmin alters the tissue disposition and neurotoxicity of manganese, but not its loading onto transferrin. Toxicol Sci., 107: 182–193.10.1093/toxsci/kfn231Search in Google Scholar

Klevay L.M. (2008). Alzheimer’s disease as copper deficiency. Med. Hypotheses, 70: 802–807.10.1016/j.mehy.2007.04.051Search in Google Scholar

Kodama H., Fujisawa C., Bhadhprasit W. (2012). Inherited copper transport disorders: biochemical mechanisms, diagnosis, and treatment. Curr. Drug Metab., 13: 237–250.10.2174/138920012799320455Search in Google Scholar

Kumar V., Kalita J., Misra U.K., Bora H.K. (2015). A study of dose response and organ susceptibility of copper toxicity in a rat model. J. Trace Elem. Med. Biol., 29: 269–274.10.1016/j.jtemb.2014.06.004Search in Google Scholar

Kumar V., Kalita J., Bora H.K., Misra U.K. (2016). Temporal kinetics of organ damage in copper toxicity: A histopathological correlation in rat model. Regul. Toxicol. Pharmacol., 81: 372–380.10.1016/j.yrtph.2016.09.025Search in Google Scholar

Lawrence R.A., Jenkinson S.G. (1987). Effects of copper deficiency on carbon tetrachloride-induced lipid peroxidation. J. Lab. Clin. Med., 109: 134–140.Search in Google Scholar

Le A., Shibata N.M., French S.W., Kim K., Kharbanda K.K., Islam M.S., La Sal-le J.M., Halsted C.H., Keen C.L., Medici V. (2014). Characterization of timed changes in hepatic copper concentrations, methionine metabolism, gene expression, and global DNA methylation in the Jackson toxic milk mouse model of Wilson disease. Int. J. Mol. Sci., 15: 8004–8023.10.3390/ijms15058004Search in Google Scholar

Li S., Tan H.Y., Wang N., Zhang Z.J., Lao L., Wong C.W., Feng Y. (2015). The role of oxidative stress and antioxidants in liver diseases. Int. J. Mol. Sci., 16: 26087–26124.10.3390/ijms161125942Search in Google Scholar

Lisanti S., Omar W.A., Tomaszewski B., De Prins S., Jacobs G., Koppen G., Mathers J.C., Langie S.A.S. (2013). Comparison of methods for quantification of global DNA methylation in human cells and tissues. PLoS One, 8: e79044.10.1371/journal.pone.0079044Search in Google Scholar

Lv Y., Liu P., Xiang C., Yang H. (2013). Oxidative stress and hypoxia observed in the kidneys of mice after a 13-week oral administration of melamine and cyanuric acid combination. Res. Vet. Sci., 95: 1100–1106.10.1016/j.rvsc.2013.10.001Search in Google Scholar

Maiorino M., Zamburlini A., Roveri A., Ursini F. (1995). Copper-induced lipid peroxidation in liposomes, micelles, and LDL: which is the role of vitamin E? Free Radic. Biol. Med., 18: 67–74.10.1016/0891-5849(94)00103-QSearch in Google Scholar

Menkes J.H., Alter M., Steigleder G.K., Weakley D.R., Sung J.H. (1962). A sex-linked recessive disorder with retardation of growth, peculiar hair, and focal cerebral and cerebellar degeneration. Pediatrics, 29: 764–779.Search in Google Scholar

Moore L.D., Le T., Fan G. (2013). DNA methylation and its basic function. Neuropsychopharmacology, 38: 23–38.10.1038/npp.2012.112Search in Google Scholar

Muriel P., Gordillo K.R. (2016). Role of oxidative stress in liver health and disease. Oxid. Med Cell. Longev., 2016: 9037051.10.1155/2016/9037051Search in Google Scholar

Nishihara E., Furuyama T., Yamashita S., Mori N. (1998). Expression of copper trafficking genes in the mouse brain. Neuroreport, 9: 3259–3263.10.1097/00001756-199810050-00023Search in Google Scholar

NRC (National Research Council) (1989). Recommended Dietary Allowances, 10th ed. Washington, D.C., National Academy Press.Search in Google Scholar

Ognik K., Wertelecki T. (2012). Effect of different vitamin E sources and levels on selected oxidative status indices in blood and tissues as well as on rearing performance of slaughter turkey hens. J. Appl. Poult. Res., 21: 259–271.10.3382/japr.2011-00366Search in Google Scholar

Ognik K., Sembratowicz I., Cholewińska E., Jankowski J., Kozłowski K., Juś-kiewicz J., Zduńczyk Z. (2018). The effect of administration of copper nanoparticles to chickens in their drinking water on the immune and antioxidant status of the blood. Anim. Sci. J., 89: 579–588.10.1111/asj.12956Search in Google Scholar

Ognik K., Cholewińska E., Juśkiewicz J., Zduńczyk Z., Tutaj K., Szlązak R. (2019). The effect of copper nanoparticles and copper (II) salt on redox reactions and epigenetic changes in a rat model. J. Anim. Physiol. Anim. Nutr. (Berl.), 103: 675–686.10.1111/jpn.13025Search in Google Scholar

Opazo C.M., Greenough M.A., Bush A.I. (2014). Copper: from neurotransmission to neuroproteostasis. Front. Aging Neurosci., 6: 143.10.3389/fnagi.2014.00143Search in Google Scholar

Paglia D.E., Valentine W.N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med., 70: 158–169.Search in Google Scholar

Palumaa P. (2013). Copper chaperones. The concept of conformational control in the metabolism of copper. FEBS Lett., 587: 1902–1910.10.1016/j.febslet.2013.05.019Search in Google Scholar

Prohaska J.R., Lukasewycz O.A. (1981). Copper deficiency suppresses the immune response of mice. Science, 213: 559–561.10.1126/science.7244654Search in Google Scholar

Reeves P.G. (1997). Components of the AIN-93 diets as improvements in the AIN-76A diet. J. Nutr., 127: 838S–8341S.10.1093/jn/127.5.838SSearch in Google Scholar

Scheiber I.F., Mercer J.F., Dringen R. (2014). Metabolism and functions of copper in brain. Prog. Neurobiol., 116: 33–57.10.1016/j.pneurobio.2014.01.002Search in Google Scholar

Seol J.K., Jeong J.H., Nam S.Y., Yun J.W., Kim J.S., Lee B.J. (2015). Comparison of the bioavailability of nano- and micro-sized copper oxide particles in copper-deficient mice. J. Prev. Vet. Med., 39: 3–14.10.13041/jpvm.2015.39.1.3Search in Google Scholar

Sirajwala H.B., Dabhi A.S., Malukar N.R., Bhalgami R.B., Pandya T.P. (2007). Serum ceruloplasmin level as an extracellular antioxidant in acute myocardial infarction. JIACM, 8: 135–138.Search in Google Scholar

Sunderman F.W., Nomoto S. (1970). Measurement of human serum ceruloplasmin by its p-phenylenediamine oxidase activity. Clin. Chem., 16: 903–910.10.1093/clinchem/16.11.903Search in Google Scholar

Surai P.F., Kochish I.I., Fisinin V.I. (2018). Glutathione peroxidases in poultry biology: Part 1. Classification and mechanisms of action. Worlds Poult. Sci. J., 74: 185–198.10.1017/S0043933918000284Search in Google Scholar

Telianidis J., Hung Y.H., Materia S., Fontaine S.L. (2013). Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis. Front. Aging Neurosci., 23: 44.10.3389/fnagi.2013.00044Search in Google Scholar

Tishchenko K.I., Beloglazkina E.K., Mazhuga A.G., Zyk N.V. (2016). Copper containing enzymes: site types and low molecular weight model compounds. Rev. J. Chem., 6: 49–82.10.1134/S2079978016010027Search in Google Scholar

Tümer Z., Møller L.B. (2010). Menkes disease. Eur. J. Hum. Genet., 18: 511–518.10.1038/ejhg.2009.187Search in Google Scholar

Udomsinprasert W., Kitkumthorn N., Mutirangura A., Chongsrisawat V., Poovorawan Y., Honsawek S. (2016). Global methylation, oxidative stress, and relative telomere length in biliary atresia patients. Sci. Rep., 6: 26969.10.1038/srep26969Search in Google Scholar

Uttara B., Singh A.V., Zamboni P., Mahajan R.T. (2009). Oxidative stress and neurode-generative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 7: 65–74.10.2174/157015909787602823Search in Google Scholar

Venza M., Visalli M., Beninati C., De Gaetano G.V., Teti D., Venza I. (2015). Cellular mechanisms of oxidative stress and action in melanoma. Oxid Med. Cell. Longev., 2015: 481782.10.1155/2015/481782Search in Google Scholar

Walsh W.J. (2012). Nutrient Power: Heal your biochemistry and heal your brain. New York, NY, Skyhorse.Search in Google Scholar

Weschawalit S., Thongthip S., Phutrakool P., Asawanonda P. (2017). Glutathione and its antiaging and antimelanogenic effects. Clin. Cosmet. Investig. Dermatol., 10: 147–153.10.2147/CCID.S128339Search in Google Scholar

Yamada H., Ono S., Wada S., Aoi W., Park E.Y., Nakamura Y., Sato K. (2018). Statuses of food-derived glutathione in intestine, blood, and liver of rat. NPJ Sci. Food, 2: 3.10.1038/s41538-018-0011-ySearch in Google Scholar

Yanar K., Aydın S., Cakatay U., Mengi M., Buyukpınarbaşılı N., Atukeren P., Sitar M.E., Sönmez A., Uslu E. (2011). Protein and DNA oxidation in different anatomic regions of rat brain in a mimetic ageing model. Basic Clin. Pharmacol. Toxicol., 109: 423–433.10.1111/j.1742-7843.2011.00756.xSearch in Google Scholar

Yang J., Yu L., Gaiteri C., Srivastava G.P., Chibnik L.B., Leurgans S.E., Schnei-der J.A., Meissner A., De Jager P.L., Bennett D.A. (2015). Association of DNA methylation in the brain with age in older persons is confounded by common neuropathologies. Int. J. Biochem. Cell Biol., 67: 58–64.10.1016/j.biocel.2015.05.009Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine