Cite

Abdelmohsen K., Panda A.C., De S., Grammatikakis I., Kim J., Ding J., Noh J.H., Kim K.M., Mattison J.A., de Cabo R., Gorospe M. (2015). Circular RNAs in monkey muscle: age-dependent changes. Aging (Albany. NY), 7: 903–910.10.18632/aging.100834Search in Google Scholar

Ashwal-Fluss R., Meyer M., Pamudurti N.R., Ivanov A., Bartok O., Hanan M., Evantal N., Memczak S., Rajewsky N., Kadener S. (2014). CircRNA biogenesis competes with pre-mRNA splicing. Mol. Cell., 56: 55–66.10.1016/j.molcel.2014.08.019Search in Google Scholar

Bassel-Duby R., Olson E.N. (2006). Signaling pathways in skeletal muscle remodeling. Annu. Rev. Biochem.,75: 19–37.10.1146/annurev.biochem.75.103004.142622Search in Google Scholar

Chen L.L., Yang L. (2015). Regulation of circRNA biogenesis. RNA Biol., 12: 381–388.10.1080/15476286.2015.1020271Search in Google Scholar

Conway A. (2018). World poultry production at nearly 123 million tons in 2018. Poultry Trends, 6.Search in Google Scholar

Du W.W., Yang W., Liu E., Yang Z., Dhaliwal P., Yang B.B. (2016). Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res., 44: 2846–2858.10.1093/nar/gkw027Search in Google Scholar

Ivanov A., Memczak S., Wyler E., Torti F., Porath H.T., Orejuela M.R., Piechotta M., Levanon E.Y., Landthaler M., Dieterich C., Rajewsky N. (2015). Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep., 10: 170–177.10.1016/j.celrep.2014.12.019Search in Google Scholar

Kulcheski F.R., Christoff A.P., Margis R. (2016). Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J. Biotechnol., 238: 42–51.10.1016/j.jbiotec.2016.09.011Search in Google Scholar

Lasda E., Parker R. (2014). Circular RNAs: diversity of form and function. RNA, 20: 1829–1842.10.1261/rna.047126.114Search in Google Scholar

Legnini I., Di Timoteo G., Rossi F., Morlando M., Briganti F., Sthandier O., Fatica A., Santini T., Andronache A., Wade M., Laneve P., Rajewsky N., Bozzoni I. (2017). Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell., 66: 22–37.10.1016/j.molcel.2017.02.017Search in Google Scholar

Li C., Li X., Ma Q., Zhang X., Cao Y., Yao Y., You S., Wang D., Quan R., Hou X., Liu Z., Zhan Q., Liu L., Zhang M., Yu S., Ni W., Hu S. (2017). Genome-wide analysis of circular RNAs in prenatal and postnatal muscle of sheep. Oncotarget, 8: 97165–97177.10.18632/oncotarget.21835Search in Google Scholar

Li H., Wei X., Yang J., Dong D., Hao D., Huang Y., Lan X., Plath M., Lei C., Ma Y., Lin F., Bai Y., Chen H. (2018 a). circFGFR4 promotes differentiation of myoblasts via binding miR-107 to relieve its inhibition of wnt3a. Mol. Ther. Nucleic Acids.,11: 272–283.10.1016/j.omtn.2018.02.012599288229858062Search in Google Scholar

Li H., Yang J., Wei X., Song C., Dong D., Huang Y., Lan X., Plath M., Lei C., Ma Y., Qi X., Bai Y., Chen H. (2018 b). CircFUT10 reduces proliferation and facilitates differentiation of myoblasts by sponging miR-133a. J. Cell. Physiol., 233: 4643–4651.10.1002/jcp.2623029044517Search in Google Scholar

Liang G., Yang Y., Niu G., Tang Z., Li K. (2017). Genome-wide profiling of Sus scrofa circular RNAs across nine organs and three developmental stages. DNA Res., 24: 523–535.10.1093/dnares/dsx022Search in Google Scholar

Memczak S., Jens M., Elefsinioti A., Torti F., Krueger J., Rybak A., Maier L., Mackowiak S.D., Gregersen L.H., Munschauer M., Loewer A., Ziebold U., Landthaler M., Kocks C., Le Noble F., Rajewsky N. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495: 333–338.10.1038/nature11928Search in Google Scholar

Nie M., Deng Z.L., Liu J., Wang D.Z. (2015). Noncoding RNAs, emerging regulators of skeletal muscle development and diseases. Biomed Res. Int., 2015, 17.10.1155/2015/676575451683126258142Search in Google Scholar

Nitsche A., Doose G., Tafer H., Robinson M., Saha N.R., Gerdol M., Canapa A., Hoffmann S., Amemiya C.T., Stadler P.F. (2014). Atypical RNAs in the coelacanth transcriptome. J. Exp. Zool. Part B Mol. Dev. Evol., 322: 342–351.10.1002/jez.b.22542Search in Google Scholar

Ouyang H., Chen X., Wang Z., Yu J., Jia X., Li Z., Luo W., Abdalla B.A., Jebessa E., Nie Q., Zhang X. (2017). Circular RNAs are abundant and dynamically expressed during embryonic muscle development in chickens. DNA Res., 25: 71–86.10.1093/dnares/dsx039Search in Google Scholar

Ouyang H., Chen X., Li W., Li Z., Nie Q., Zhang X. (2018). Circular RNA circSVIL promotes myoblast proliferation and differentiation by sponging miR-203 in chicken. Front. Genet., 9: 1–10.10.3389/fgene.2018.00172Search in Google Scholar

Rybak-Wolf A., Stottmeister C., Glažar P., Jens M., Pino N., Hanan M., Behm M., Bartok O., Ashwal-Fluss R., Herzog M., Schreyer L., Papavasileiou P., Ivanov A., Öhman M., Refojo D., Kadener S., Rajewsky N. (2014). Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell, 58: 870–885.10.1016/j.molcel.2015.03.027Search in Google Scholar

Salzman J., Chen R.E., Olsen M.N., Wang P.L., Brown P.O. (2013). Cell-type specific features of circular RNA expression. PLoS Genet., 9: 1003777.10.1371/journal.pgen.1003777Search in Google Scholar

Schiaffino S., Sandri M., Murgia M. (2007). Activity-dependent signaling pathways controlling muscle diversity and plasticity. Physiology, 22: 269–278.10.1152/physiol.00009.2007Search in Google Scholar

Schiaffino S., Dyar K.A., Ciciliot S., Blaauw B., Sandri M. (2013). Mechanisms regulating skeletal muscle growth and atrophy. FEBS J., 280: 4294–4314.10.1111/febs.12253Search in Google Scholar

Shen Y., Guo X., Wang W. (2017). Identification and characterization of circular RNAs in zebrafish. FEBS letters, 591: 213–220.10.1002/1873-3468.12500Search in Google Scholar

Sun J., Xie M., Huang Z., Li H., Chen T., Sun R., Wang J., Xi Q., Wu T., Zhang Y. (2017). Integrated analysis of non-coding RNA and mRNA expression profiles of 2 pig breeds differing in muscle traits. J. Anim. Sci., 95: 1092–1103.10.2527/jas2016.0867Search in Google Scholar

Venø M.T., Hansen T.B., Venø S.T., Clausen B.H., Grebing M., Finsen B., Holm I.E., Kjems J. (2015). Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol., 16: 245.10.1186/s13059-015-0801-3Search in Google Scholar

Vicens Q., Westhof E. (2014). Previews Biogenesis of Circular RNAs. Cell, 159: 13–14.10.1016/j.cell.2014.09.005Search in Google Scholar

Wei X., Li H., Yang J., Hao D., Dong D., Huang Y., Lan X., Plath M., Lei C., Lin F., Bai Y., Chen H. (2017). Circular RNA profiling reveals an abundant circLMO7 that regulates myoblasts differentiation and survival by sponging miR-378a-3p. Cell Death Dis., 8: e3153.10.1038/cddis.2017.541Search in Google Scholar

Westholm J.O., Miura P., Olson S., Shenker S., Joseph B., Sanfilippo P., Celniker S.E., Graveley B.R., Lai E.C. (2014). Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep., 9: 1966–1981.10.1016/j.celrep.2014.10.062Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine