Open Access

The Effect of Administration of Copper Nanoparticles in Drinking Water on Redox Reactions in the Liver and Breast Muscle of Broiler Chickens


Cite

Adegbenjo A.A., Idowu O.M.O., Oso A.O., Adeyemi O.A., Sobayo R.A., Akinloye O.A., Jegede A.V., Osho S.O., Williams G.A. (2014). Effects of dietary supplementation with copper sulphate and copper proteinate on plasma trace minerals, copper residues in meat tissues, organs, excreta and tibia bone of cockerels. Slovak J. Anim. Sci., 47: 164–171.Search in Google Scholar

Ajuwon O.R., Idowu O.M.O., Afolabi S.A., Kehinde B.O., Oguntola O.O., Olatunbosun K.O. (2011). The effects of dietary copper supplementation on oxidative and antioxidant systems in broiler chickens. Arch. Zootec., 60: 275–282.10.4321/S0004-05922011000200012Search in Google Scholar

Almansour M.I. (2006). Biochemical effects of copper sulfate after chronic treatment in quail. J. Biol. Sci., 6: 1077–1082.10.3923/jbs.2006.1077.1082Search in Google Scholar

Ao T., Pierce J.L., Power R., Pescatore A.J., Cantor A.H., Dawson K.A., Ford M.J. (2009). Effects of feeding different forms of zinc and copper on the performance and tissue mineral content of chicks. Poultry Sci., 88: 2171–2175.10.3382/ps.2009-0011719762872Search in Google Scholar

Aoki T. (2004). Copper deficiency and the clinical practice. Jpn. Med. Assoc. J., 47: 365–370.Search in Google Scholar

Arredondo M., Nunez M.T. (2005). Iron and copper metabolism. Mol. Aspects Med., 26: 313–327.10.1016/j.mam.2005.07.01016112186Search in Google Scholar

Barrett K.E., Boitano S., Barman S.M., Brooks H.L. (2010). Ganong’s Review of Medical Physiology. 23rd ed. The McGraw-Hill Companies.Search in Google Scholar

Bjorklund G. (2013). The role of zinc and copper in autism spectrum disorders. Acta Neurobiol. Exp., 73: 225–236.10.55782/ane-2013-1932Search in Google Scholar

Bozkaya L.A., Ozturk-Urek R., Aydemir T., Tarhan L. (2001). Effects of Se, Cu and Se+ vitamin E deficiency on the activities of CuZn-SOD, GSH-Px, CAT and LPO levels in chicken erythrocytes. Cell Biochem. Funct., 19: 153–157.10.1002/cbf.90611494304Search in Google Scholar

Collins J.F., Prohaska J.R., Knutson M.D. (2010). Metabolic crossroads of iron and copper. Nutr. Rev., 68: 133–147.10.1111/j.1753-4887.2010.00271.x369034520384844Search in Google Scholar

EFSA (2016). Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Revision of the currently authorised maximum copper content in complete feed. EFSA Journal, 14: 4563.10.2903/j.efsa.2016.4563Search in Google Scholar

Gaetke L.M., Chow C.K. (2003). Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology, 189: 147–163.10.1016/S0300-483X(03)00159-812821289Search in Google Scholar

Hatori Y., Lutsenko S. (2016). The role of copper chaperone Atox1 in coupling redox homeostasis to intracellular copper distribution. Antioxidants, 5: 25–41.10.3390/antiox5030025503957427472369Search in Google Scholar

Hellman N.E., Gitlin J.D. (2002). Ceruloplasmin metabolism and function. Annu. Rev. Nutr., 22: 439–458.10.1146/annurev.nutr.22.012502.11445712055353Search in Google Scholar

Jaiser S.R., Winston G.P. (2010). Copper deficiency myelopathy. J. Neurol., 257: 869–881.10.1007/s00415-010-5511-x369147820232210Search in Google Scholar

Karimi A., Sadeghi G., Vaziry A. (2011). The effect of copper in excess of the requirement during the starter period on subsequent performance of broiler chicks. J. Appl. Poult. Res., 20: 203–209.10.3382/japr.2010-00290Search in Google Scholar

Kozłowski K., Jankowski J., Otowski K., Zduńczyk Z., Ognik K. (2018). Metabolic parameters in young turkeys fed diets with different inclusion levels of copper nanoparticles. Pol. J. Vet. Sci., 21: 245–253.10.24425/119043Search in Google Scholar

Leeson S. (2009). Copper metabolism and dietary needs. Worlds Poultry Sci. J., 65: 353–366.10.1017/S0043933909000269Search in Google Scholar

Letelier M.E., Sánchez-Jofré S., Peredo-Silva L., Cortés-Troncoso J., Aracena-Parks P. (2010). Mechanisms underlying iron and copper ions toxicity in biological systems: Pro-oxidant activity and protein-binding effects. Chem.-Biol. Interact., 188: 220–227.10.1016/j.cbi.2010.06.01320603110Search in Google Scholar

Linder M.C. (2016). Ceruloplasmin and other copper binding components of blood plasma and their functions: an update. Metallomics, 8: 887–905.10.1039/C6MT00103CSearch in Google Scholar

Luo X.G., Ji F., Lin Y.X., Steward F.A., Lu L., Liu B., Yu S.X. (2005). Effects of dietary supplementation with copper sulfate or tribasic copper chloride on broiler performance, relative copper bioavailability, and oxidation stability of vitamin E in feed. Poultry Sci., 84: 888–893.10.1093/ps/84.6.88815971525Search in Google Scholar

Majewski M., Ognik K., Zdunczyk P., Juskiewicz J. (2017). Effect of dietary copper nanoparticles versus one copper (II) salt: Analysis of vasoreactivity in a rat model. Pharmacol. Rep., 69: 1282–1288.10.1016/j.pharep.2017.06.00129128810Search in Google Scholar

Mroczek-Sosnowska N., Łukasiewicz M., Wnuk A., Sawosz E., Niemiec J. (2014). Effect of copper nanoparticles and copper sulfate administered in ovo on copper content in breast muscle, liver and spleen of broiler chickens. Anim. Sci. J., 53: 135–142.Search in Google Scholar

NRC (1994). Nutritional Requirements of Poultry. 9th rev. ed. Natl. Acad. Press, Washington, DC.Search in Google Scholar

Ognik K., Wertelecki T. (2012). Effect of different vitamin E sources and levels on selected oxidative status indices in blood and tissues as well as on rearing performance of slaughter turkey hens. J. Appl. Poult. Res., 21: 259–271.10.3382/japr.2011-00366Search in Google Scholar

Ognik K., Stępniowska A., Cholewińska E., Kozłowski K. (2016). The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium. Poultry Sci., 95: 2045–2051.10.3382/ps/pew20027307476Search in Google Scholar

Ognik K., Sembratowicz I., Cholewińska E., Jankowski J., Kozłowski K., Juśkiewicz J., Zduńczyk Z. (2018). The effect of administration of copper nanoparticles to chickens in their drinking water on the immune and antioxidant status of the blood. Anim. Sci. J., 89: 579–588.10.1111/asj.1295629235214Search in Google Scholar

Pan Y., Loo G. (2000). Effect of copper deficiency on oxidative DNA damage in Jurkat T-lymphocytes. Free Radic. Biol. Med., 28: 824–830.10.1016/S0891-5849(00)00165-910754279Search in Google Scholar

Pastore A., Federici G., Bertini E., Piemonte F. (2003). Analysis of glutathione: implication in redox and detoxification. Clin. Chim. Acta, 333: 19–39.10.1016/S0009-8981(03)00200-6Search in Google Scholar

Pineda L., Sawosz E., Vadalasettya K.P., Chwalibog A., (2013). Effect of copper nanoparticles on metabolic rate and development of chicken embryos. Anim. Feed Sci. Tech., 186: 125–129.10.1016/j.anifeedsci.2013.08.012Search in Google Scholar

Samanta B., Biswas A., Ghosh P.R. (2011). Effects of dietary copper supplementation on production performance and plasma biochemical parameters in broiler chickens. Brit. Poultry Sci., 52: 573–577.10.1080/00071668.2011.60864922029784Search in Google Scholar

Skrivan M., Skrivanová V., Marounek M. (2005). Effects of dietary zinc, iron, and copper in layer feed on distribution of these elements in eggs, liver, excreta, soil, and herbage. Poultry Sci., 84: 1570–1575.10.1093/ps/84.10.157016335126Search in Google Scholar

Soetan K.O., Olaiya C.O., Oyewole O.E. (2010). The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Sci., 4: 200–222.Search in Google Scholar

Song Z., Zhu L., Zhao T., Jiao H., Lin H. (2009). Effect of copper on plasma ceruloplasmin and antioxidant ability in broiler chickens challenged by lipopolysaccharide. Asian-Australas. J. Anim. Sci., 22: 1400–1406.10.5713/ajas.2009.90259Search in Google Scholar

Videla L.A., Fernández V., Tapia G., Varela P. (2003). Oxidative stress-mediated hepatotoxicity of iron and copper: role of Kupffer cells. Biometals, 16: 103–111.10.1023/A:1020707811707Search in Google Scholar

Xiang-Qi Z., Zhang K.Y., Ding X.M, Bai S.P. (2009). Effects of dietary supplementation with copper sulfate or tribasic copper chloride on carcass characteristics, tissular nutrients deposition and oxidation in broilers. Pak. J. Nutr., 8: 1114–1119.10.3923/pjn.2009.1114.1119Search in Google Scholar

Zhang S.S., Noordin M.M., Rahman S.O., Haron J. (2000). Effects of copper overload on hepatic lipid peroxidation and antioxidant defense in rats. Vet. Hum. Toxicol., 42: 261–264.Search in Google Scholar

Zhao J., Shirley R.B., Vazquez-Anon M., Dibner J.J., Richards J.D., Fisher P., Hampton T., Christensen K.D., Allard J.P., Giesen A.F. (2010). Effects of chelated trace minerals on growth performance, breast meat yield, and footpad health in commercial meat broilers. J. Appl. Poultry Res., 19: 365–372.10.3382/japr.2009-00020Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine