Cite

Aken B.L., Ayling S., Barrell D., Clarke L., Curwen V., Fairley S., Fernandez Banet J., Billis K., García Girón C., Hourlier T., Howe K., Kähäri A., Koko-cinski F., Martin F.J., Murphy D.N., Nag R., Ruffier M., Schuster M., Tang Y.A., Vogel J.H., White S., Zadissa A., Flicek P., Searle S.M.J. (2016). The Ensembl gene annotation system. Database (Oxford), 2016: baw093.10.1093/database/baw093Search in Google Scholar

Baulain U., Köhler P., Kallweit E., Brade W. (2000). Intramuscular fat content in some native German pig breeds. Proc. Joint session of the EAAP commissions on pig production, animal genetics and animal nutrition, Zurich, Switzerland, 25.08.1999, pp. 181–184.Search in Google Scholar

Chen X., Zhou B., Luo Y., Huang Z., Jia G., Liu G., Zhao H. (2016). Tissue distribution of porcine FTO and its effect on porcine intramuscular preadipocytes proliferation and differentiation. PLoS One, 11: e0151056.10.1371/journal.pone.0151056Search in Google Scholar

Davoli R., Gandolfi G., Braglia S., Comella M., Zambonelli P., Buttazzoni L., Russo V. (2011). New SNP of the porcine perilipin 2 (PLIN2) gene, association with carcass traits and expression analysis in skeletal muscle. Mol. Biol. Rep., 38: 1575–1583.10.1007/s11033-010-0266-0Search in Google Scholar

Dvořáková V., Bartenschlager H., Stratil A., Horák P., Stupka R., Cítek J., Sprysl M., Hrdlicová A., Geldermann H. (2012). Association between polymorphism in the FTO gene and growth and carcass traits in pig crosses. Genet. Sel. Evol., 44: 13.10.1186/1297-9686-44-13Search in Google Scholar

Fan B., Du Z.Q., Rothschild M.F. (2009). The fat mass and obesity-associated (FTO) gene is associated with intramuscular fat content and growth rate in the pig. Anim. Biotechnol., 20: 58–70.10.1080/10495390902800792Search in Google Scholar

Fu Y., Li L., Ren S. (2013). Effect of FTO expression and polymorphism on fat deposition in Suzhong pigs. Asian-Australas. J. Anim. Sci., 26: 1365–1373.10.5713/ajas.2013.13055Search in Google Scholar

Ghosh D. (2000). Object-oriented transcription factors database (ooTFD). Nucleic Acids Res., 28: 308–310.10.1093/nar/28.1.308Search in Google Scholar

Gol S., Ros-Freixedes R., Zambonelli P., Tor M., Pena R.N., Braglia S., Zappa-terra M., Estany J., Davoli R. (2016). Relationship between perilipin genes polymorphisms and growth, carcass and meat quality traits in pigs. J. Anim. Breed. Genet., 133: 24–30.10.1111/jbg.12159Search in Google Scholar

Goymer P. (2007). Synonymous mutations break their silence. Nat. Rev. Genet., 8: 92.10.1038/nrg2056Search in Google Scholar

Hamm R. (1986). Functional properties of the myofibrillar system and their measurement. In: Muscle as Food, Bechtel P.J. (ed). Academic Press Inc, London, UK, pp. 135–199.10.1016/B978-0-12-084190-5.50009-6Search in Google Scholar

Hammermeister A., Blicharski T., Warda A. (2013). PQS system as a modern solution for producer, processor and consumer (in Polish). Przeg. Hod., 81: 10–12.Search in Google Scholar

Hunt S.C., Stone S., Xin Y., Scherer C.A., Magness C.L., Iadonato S.P., Hop-kins P.N., Adams T.D. (2008). Association of the FTO gene with BMI. Obesity, 16: 902–904.10.1038/oby.2007.126Search in Google Scholar

Ibáñez-Escriche N., Magallón E., Gonzalez E., Tejeda J.F., Noguera J.L. (2016). Genetic parameters and crossbreeding effects of fat deposition and fatty acid profiles in Iberian pig lines. J. Anim. Sci., 94: 28–37.10.2527/jas.2015-9433Search in Google Scholar

Jennen D.G., Brings A.D., Liu G., Jüngst H., Tholen E., Jonas E., Tesfaye D., Schellander K., Phatsara C. (2007). Genetic aspects concerning drip loss and water-holding capacity of porcine meat. J. Anim. Breed. Genet., 124: 2–11.10.1111/j.1439-0388.2007.00681.xSearch in Google Scholar

Jia G.F., Fu Y., Zhao X., Dai Q., Zheng G.Q., Yang Y., Yi C., Lindahl T., Pan T., Yang Y.G., He C. (2011). N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol., 7: 885–887.10.1038/nchembio.687Search in Google Scholar

Li B., Leal S.M. (2009). Deviations from Hardy-Weinberg equilibrium in parental and unaffected sibling genotype data. Hum. Hered., 67: 104–115.10.1159/000179558Search in Google Scholar

Liu K., Muse S.V. (2005). PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 21: 2128–2129.10.1093/bioinformatics/bti282Search in Google Scholar

Newcom D.W., Baas T.J., Mabry J.W., Goodwin R.N. (2002). Genetic parameters for pork carcass components. J. Anim. Sci., 80: 3099–3106.10.2527/2002.80123099xSearch in Google Scholar

Qi L., Kang K., Zhang C.,van Dam R.M., Kraft P., Hunter D., Lee C.H., Hu F.B. (2008). Fat mass- and obesity-associated (FTO) gene variant is associated with obesity: longitudinal analyses in two cohort studies and functional test. Diabetes, 57: 3145–3151.10.2337/db08-0006Search in Google Scholar

Sellier P. (1998). Genetic of meat and carcass traits. In: The Genetics of the Pig, Rothschild M.F., Rubinsky A. (eds). CAB International, New York, USA, pp. 465–510.Search in Google Scholar

Szydlowski M., Salamon S., Grzes M., Switonski M. (2012). SNP in the 5′ flanking region of the pig FTO gene is associated with fatness in Polish Landrace. Livest. Sci., 150: 397–400.10.1016/j.livsci.2012.09.001Search in Google Scholar

Tempfli K., Kiss B., Szalai K., Simon Z., Pongrácz L., Papp Á.B. (2016). Differential expression of six genes in fat-type Hungarian Mangalica and other pigs. Arch. Anim. Breed., 59: 259–265.10.5194/aab-59-259-2016Search in Google Scholar

Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B.C., Remm M., Rozen S.G. (2012). Primer3 – new capabilities and interfaces. Nucleic Acids Res., 40: e115.10.1093/nar/gks596Search in Google Scholar

Yang M., Dong K., Shu X., Li W., Huang Y., Pan H., Zhao S. (2017). Cloning of perilipin 2 gene and investigating its expression level in porcine longissimus muscle. J. Vet. Sci. Anim. Husb., 5: 1–9.10.15744/2348-9790.5.106Search in Google Scholar

Zambonelli P., Gaffo E., Zappaterra M., Bortoluzzi S., Davoli R. (2016). Transcriptional profiling of subcutaneous adipose tissue in Italian Large White pigs divergent for backfat thickness. Anim. Genet., 47: 306–323.10.1111/age.12413Search in Google Scholar

Zhao S.M., Li W.Z., Pan H.B., Huang Y., Yang M.H., Wei H.J., Gao S.Z. (2012). Expression levels of candidate genes for intramuscular fat deposition in two Banna mini-pig inbred lines divergently selected for fatness traits. Genet. Mol. Biol., 35: 783–789.10.1590/S1415-47572012005000079Search in Google Scholar

Żak G., Tyra M., Różycki M. (2008). Possibility of improvement of lean meat content of ham and loin in pigs by selection for growth and feed conversion rate. Anim. Sci. Pap. Rep., 26: 305–316.Search in Google Scholar

Żak G., Pieszka M. (2009). Improving pork quality through genetics and nutrition. Ann. Anim. Sci., 9: 327–339.Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine