Open Access

Can Reprogramming of Overall Epigenetic Memory and Specific Parental Genomic Imprinting Memory within Donor Cell-Inherited Nuclear Genome be a Major Hindrance for the Somatic Cell Cloning of Mammals? – A Review


Cite

Agrawal H., Selokar N.L., Saini M., Singh M.K., Chauhan M.S., Palta P., Sin-gla S.K., Manik R.S. (2018). Epigenetic alteration of donor cells with histone deacetylase inhibitor m-carboxycinnamic acid bishydroxymide improves the in vitro developmental competence of buffalo (Bubalus bubalis) cloned embryos. Cell. Reprogram., 20: 76-88.10.1089/cell.2017.0035Search in Google Scholar

Allegrucci C., Thurston A., Lucas E., Young L. (2005). Epigenetics and the germline. Reproduction, 129: 137-149.10.1530/rep.1.00360Search in Google Scholar

Anckaert E., Fair T. (2015). DNAmethylation reprogramming during oogenesis and interference by reproductive technologies: Studies in mouse and bovine models. Reprod. Fertil. Dev., 27: 739-754.10.1071/RD14333Search in Google Scholar

Armstrong L.M., Lako W., Dean W., Stojkovic M. (2006). Epigenetic modification is central to genome reprogramming in somatic cell nuclear transfer. Stem Cells, 24: 805-814.10.1634/stemcells.2005-0350Search in Google Scholar

Bonk A.J., Cheong H.T., Li R., Lai L., Hao Y., Liu Z., Samuel M., Fergason E.A., Whitworth K.M., Murphy C.N., Antoniou E., Prather R.S. (2007). Correlation of developmental differences of nuclear transfer embryos cells to the methylation profiles of nuclear transfer donor cells in swine. Epigenetics, 2: 179-186.10.4161/epi.2.3.4844Search in Google Scholar

Bonk A.J., Li R., Lai L., Hao Y., Liu Z., Samuel M., Fergason E.A., Whitworth K.M., Murphy C.N., Antoniou E., Prather R.S. (2008). Aberrant DNAmethylation in porcine in vitro-, parthenogenetic-, and somatic cell nuclear transfer-produced blastocysts. Mol. Reprod. Dev., 75: 250-264.10.1002/mrd.20786Search in Google Scholar

Bortvin A., Eggan K ., Skaletsky H ., Akutsu H ., Berry D .L., Yanagimachi R ., Page D.C., Jaenisch R. (2003). Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development, 130: 1673-1680.10.1242/dev.00366Search in Google Scholar

Bowles E.J., Campbell K.H., St John J.C. (2007). Nuclear transfer: preservation ofanuclear genome at the expense of its associated mt DNAgenome(s). Curr. Top. Dev. Biol., 77: 251-290.10.1016/S0070-2153(06)77010-7Search in Google Scholar

Burgstaller J.P., Schinogl P., Dinnyes A., Müller M., Steinborn R. (2007). Mitochondrial DNAheteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer. BMC Dev. Biol., 7: 141.10.1186/1471-213X-7-141Search in Google Scholar

Campbell K.H., Alberio R. (2003). Reprogramming the genome: role of the cell cycle. Reprod. Suppl., 61: 477-494.Search in Google Scholar

Cezar G.G., Bartolomei M.S., Forsberg E.J., First N.L., Bishop M.D., Eilert -sen K.J. (2003). Genome-wide epigenetic alterations in cloned bovine fetuses. Biol. Reprod., 68: 1009-1014.10.1095/biolreprod.102.010181Search in Google Scholar

Chavatte-Palmer P., Heyman Y., Richard C., Monget P., Le Bourhis D., Kann G., Chilliard Y., Vignon X., Renard J.P. (2002). Clinical, hormonal, and hematologic characteristics of bovine calves derived from nuclei from somatic cells. Biol. Reprod., 66: 1596-1603.10.1095/biolreprod66.6.1596Search in Google Scholar

Corry G.N., Tanasijevic B., Barry E.R., Krueger W., Rasmussen T.P. (2009). Epigenetic regulatory mechanisms during preimplantation development. Birth Defects Res. C, 87: 297-313.10.1002/bdrc.20165Search in Google Scholar

Cui W., Wylie D., Aslam S., Dinnyes A., King T., Wilmut I., Clark A.J. (2003). Telomerase- immortalized sheep fibroblasts can be reprogrammed by nuclear transfer to undergo early development. Biol. Reprod., 69: 15-21.10.1095/biolreprod.102.013250Search in Google Scholar

Dean W., Santos F., Reik W. (2003). Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer. Semin. Cell Dev. Biol., 14: 93-100.10.1016/S1084-9521(02)00141-6Search in Google Scholar

Deshmukh R.S., Østrup O., Østrup E., Vejlsted M., Niemann H., Lucas- Hahn A., Petersen B., Li J., Callesen H., Hyttel P., (2011). DNAmethylation in porcine preimplantation embryos developed in vivo and produced by in vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer. Epigenetics, 6: 177-187.10.4161/epi.6.2.13519Search in Google Scholar

De Sousa P.A., King T., Harkness L., Young L.E., Walker S.K., Wilmut I. (2001). Evaluation of gestational deficiencies in cloned sheep fetuses and placentae. Biol. Reprod., 65: 23-30.10.1095/biolreprod65.1.23Search in Google Scholar

Dindot S.V., Farin P.W., Farin C.E., Romano J., Walker S., Long C., Piedrahita J.A. (2004). Epigenetic and genomic imprinting analysis in nuclear transfer derived Bos gaurus/Bos taurus hybrid fetuses. Biol. Reprod., 71: 470-478.10.1095/biolreprod.103.025775Search in Google Scholar

Eggan K., Akutsu H., Hochedlinger K., Rideout III W., Yanagimachi R., Jaen -isch R. (2000). X-chromosome inactivation in cloned mouse embryos. Science, 290: 1578-1581.10.1126/science.290.5496.1578Search in Google Scholar

Eilertsen K.J., Power R.A., Harkins L.L., Misica P. (2007). Targeting cellular memory to reprogram the epigenome, restore potential, and improve somatic cell nuclear transfer. Anim. Reprod. Sci., 98: 129-146.10.1016/j.anireprosci.2006.10.019Search in Google Scholar

Enright B.P., Kubota C., Yang X., Tian X.C. (2003). Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin Aor 5-aza-2’-deoxycytidine. Biol. Reprod., 69: 896-901.10.1095/biolreprod.103.017954Search in Google Scholar

Esteves T.C., Balbach S.T., Pfeiffer M.J., Araúzo-Bravo M.J., Klein D.C., Sinn M., Boiani M. (2011). Somatic cell nuclear reprogramming of mouse oocytes endures beyond reproductive decline. Aging Cell, 10: 80-95.10.1111/j.1474-9726.2010.00644.xSearch in Google Scholar

Fernandez-Gonzales R., Moreira P., Bilbao A., Jimenez A., Perez- Crespo M., Ramirez M.A., De Fonseca F.R., Pintado B., Gutierrez- Adan A. (2004). Longterm effect of in vitro culture of mouse embryos with serum on m RNAexpression of imprinting genes, development, and behavior. Proc. Natl. Acad. Sci. USA, 101: 5880-5885.10.1073/pnas.0308560101Search in Google Scholar

Fournier C., Goto Y., Ballestar E., Delaval K., Hever A.M., Esteller M., Feil R. (2002). Allele-specific histone lysine methylation marks regulatory regions at imprinted mouse genes. EMBO J., 21: 6560-6570.10.1093/emboj/cdf655Search in Google Scholar

Han Y.M., Kang Y.K., Koo D.B., Lee K.K. (2003). Nuclear reprogramming of cloned embryos produced in vitro. Theriogenology, 59: 33-44.10.1016/S0093-691X(02)01271-2Search in Google Scholar

Hiendleder S. (2007). Mitochondrial DNAinheritance after SCNT. Adv. Exp. Med. Biol., 591: 103-116.10.1007/978-0-387-37754-4_8Search in Google Scholar

Hiendleder S., Prelle K., Brüggerhoff K., Reichenbach H.D., Wenigerkind H., Bebbere D., Stojkovic M., Müller S., Brem G., Zakhartchenko V., Wolf E. (2004). Nuclear-cytoplasmic interactions affect in utero developmental capacity, phenotype, and cellular metabolism of bovine nuclear transfer fetuses. Biol. Reprod., 70: 1196-1205.10.1095/biolreprod.103.023028Search in Google Scholar

Hill J.R., Schlafer D.H., Fisher P.J., Davies C.J. (2002). Abnormal expression of trophoblast major histocompatibility complex class Iantigens in cloned bovine pregnancies is associated with a pronounced endometrial lymphocytic response. Biol. Reprod., 67: 55-63.10.1095/biolreprod67.1.55Search in Google Scholar

Hossain M.M., Tesfaye D., Salilew- Wondim D., Held E., Pröll M.J., Rings F., Kir-fel G., Looft C., Tholen E., Uddin J., Schellander K., Hoelker M. (2014). Massive deregulation of mi RNAs from nuclear reprogramming errors during trophoblast differentiation for placentogenesis in cloned pregnancy. BMC Genomics, 15: 43.10.1186/1471-2164-15-43Search in Google Scholar

Hörmanseder E., Simeone A., Allen G.E., Bradshaw C.R., Figlmüller M., Gur-don J., Jullien J. (2017). H3K4 methylation-dependent memory of somatic cell identity inhibits reprogramming and development of nuclear transfer embryos. Cell Stem Cell, 21: 135-143.e6.10.1016/j.stem.2017.03.003Search in Google Scholar

Huang J., Zhang H., Yao J., Qin G., Wang F., Wang X., Luo A., Zheng Q., Cao C., Zhao J. (2016). BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei. Reproduction, 151: 39-49.10.1530/REP-15-0460Search in Google Scholar

Inoue K., Kohda T., Lee J., Ogonuki N., Mochida K., Noguchi Y., Tanemura K., Kaneko-Ishino T., Ishino F., Ogura A. (2002). Faithful expression of imprinted genes in cloned mice. Science, 295: 297.10.1126/science.295.5553.297Search in Google Scholar

Iurlaro M.,von Meyenn F., Reik W. (2017). DNAmethylation homeostasis in human and mouse development. Curr. Opin. Genet. Dev., 43: 101-109.10.1016/j.gde.2017.02.003Search in Google Scholar

Jafarpour F., Hosseini S.M., Ostadhosseini S., Abbasi H., Dalman A., Nasr-Es -fahani M.H. (2017). Comparative dynamics of 5-methylcytosine reprogramming and TETfamily expression during preimplantation mammalian development in mouse and sheep. Theriogenology, 89: 86-96.10.1016/j.theriogenology.2016.10.010Search in Google Scholar

Jeon B.G., Coppola G., Perrault S.D., Rho G.J., Betts D.H., King W.A. (2008). S-adenosylhomocysteine treatment of adult female fibroblasts alters X-chromosome inactivation and improves in vitro embryo development after somatic cell nuclear transfer. Reproduction, 135: 815-828.10.1530/REP-07-0442Search in Google Scholar

Jouneau A., Renard J.P. (2003). Reprogramming in nuclear transfer. Curr. Opin. Genet. Dev., 13: 486-491.10.1016/j.gde.2003.08.007Search in Google Scholar

Jullien J., Vodnala M., Pasque V., Oikawa M., Miyamoto K., Allen G., David S.A., Brochard V., Wang S., Bradshaw C., Koseki H., Sartorelli V., Beaujean N., Gurdon J. (2017). Gene resistance to transcriptional reprogramming following nuclear transfer is directly mediated by multiple chromatin-repressive pathways. Mol. Cell, 65: 873-884.e8.10.1016/j.molcel.2017.01.030Search in Google Scholar

Kang Y.K., Park J.S., Koo D.B., Choi Y.H., Kim S.U., Lee K.K., Han Y.M. (2002). Limited demethylation leaves mosaic-type methylation states in cloned bovine pre-implantation embryos. EMBO J., 21: 1092-1100.10.1093/emboj/21.5.1092Search in Google Scholar

Kang Y.K., Yeo S., Kim S.H., Koo D.B., Park J.S., Wee G., Han J.S., Oh K.B., Lee K.K., Han Y.M. (2003). Precise recapitulation of methylation change in early cloned embryos. Mol. Reprod. Dev., 66: 32-37.10.1002/mrd.10330Search in Google Scholar

Kim J.M., Ogura A., Nagata M., Aoki F. (2002). Analysis of the mechanism for chromatin remodeling in embryos reconstructed by somatic nuclear transfer. Biol. Reprod., 67: 760-766.10.1095/biolreprod.101.000612Search in Google Scholar

Kim S.H., Kang Y.K., Koo D.B., Kang M.J., Moon S.J., Lee K.K., Han Y.M. (2004). Differential DNAmethylation reprogramming of various repetitive sequences in mouse preimplantation embryos. Biochem. Biophys. Res. Commun., 324: 58-63.10.1016/j.bbrc.2004.09.023Search in Google Scholar

Koike T., Wakai T., Jincho Y., Sakashita A., Kobayashi H., Mizutani E., Wakaya -ma S., Miura F., Ito T., Kono T. (2016). DNAmethylation errors in cloned mouse sperm by germ line barrier evasion. Biol. Reprod., 94: 1-7.10.1095/biolreprod.116.138677Search in Google Scholar

Koo D.B., Kang Y.K., Choi Y.H., Park J.S., Kim H.N., Oh K.B., Son D.S., Park H., Lee K.K., Han Y.M. (2002). Aberrant allocations of inner cell mass and trophectoderm cells in bovine nuclear transfer blastocysts. Biol. Reprod., 67: 487-492.10.1095/biolreprod67.2.487Search in Google Scholar

Kourmouli N., Jeppesen P., Mahadevhaiah S., Burgoyne P., Wu R., Gilbert D.M., Bongiorni S., Prantera G., Fanti L., Pimpinelli S., Shi W., Fundele R., Singh P.B. (2004). Heterochromatin and tri-methylated lysine 20 of histone H4 in animals. J. Cell Sci., 117: 2491-2501.10.1242/jcs.01238Search in Google Scholar

Kungulovski G., Jeltsch A. (2016). Epigenome editing: state of the art, concepts, and perspectives. Trends Genet., 32: 101-113.10.1016/j.tig.2015.12.001Search in Google Scholar

Lee J., Inoue K., Ono R., Ogonuki N., Kohda T., Kaneko-Ishino T., Ogura A., Ishino F. (2003). Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development, 129: 1807-1817.10.1242/dev.129.8.1807Search in Google Scholar

Liao H.F., Mo C.F., Wu S.C., Cheng D.H., Yu C.Y., Chang K.W., Kao T.H., Lu C.W., Pin-skaya M., Morillon A., Lin S.S., Cheng W.T., Bourc'his D., Bestor T., Sung L.Y., Lin S.P. (2015). Dnmt3l-knockout donor cells improve somatic cell nuclear transfer reprogramming efficiency. Reproduction, 150: 245-256.10.1530/REP-15-0031Search in Google Scholar

Liu H., Kim J.M., Aoki F. (2004). Regulation of histone H3 lysine 9 methylation in oocytes and early preimplantation embryos. Development, 131: 2269-2280.10.1242/dev.01116Search in Google Scholar

Liu X., Wang Y., Gao Y., Su J., Zhang J., Xing X., Zhou C., Yao K., An Q., Zhang Y. (2018). H3K9 demethylase KDM4Eis an epigenetic regulator for bovine embryonic development andadefective factor for nuclear reprogramming. Development, 145: dev158261.10.1242/dev.158261Search in Google Scholar

Lorincz M.C., Schubeler D., Hutchinson S.R., Dickerson D.R., Groudine M. (2002). DNAmethylation density influences the stability of an epigenetic imprint and Dnmt3a/bindependent de novo methylation. Mol. Cell. Biol., 22: 7572-7580.10.1128/MCB.22.21.7572-7580.2002Search in Google Scholar

Lorthongpanich C., Solter D., Lim C.Y. (2010). Nuclear reprogramming in zygotes. Int. J. Dev. Biol., 54: 1631-1640.10.1387/ijdb.103201clSearch in Google Scholar

Lucifero D., Mertineit C., Clarke H.J., Bestor T.H., Trasler J.M. (2002). Methylation dynamics of imprinted genes in mouse germ cells. Genomics, 79: 530-538.10.1006/geno.2002.6732Search in Google Scholar

Lucifero D., Chaillet J.R., Trasler J.M. (2004). Potential significance of genomic imprinting defects for reproduction and assisted reproductive technology. Hum. Reprod., 10: 3-18.10.1093/humupd/dmh002Search in Google Scholar

Ma P.J., Zhang H., Li R., Wang Y.S., Zhang Y., Hua S. (2015). P53-mediated repression of the reprogramming in cloned bovine embryos through direct interaction with HDAC1 and indirect interaction with DNMT3A. Reprod. Domest. Anim., 50: 400-409.10.1111/rda.12502Search in Google Scholar

Mann M.R.W., Bartolomei M.S. (2002). Epigenetic reprogramming in the mammalian embryo: struggle of the clones. Genome Biol., 3: reviews1003.1-reviews1003.4.10.1186/gb-2002-3-2-reviews1003Search in Google Scholar

Mann M.R.W., Chung Y.G., Nolen L.D., Verona R.I., Latham K.E., Bartolomei M.S. (2003). Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol. Reprod., 69: 902-914.10.1095/biolreprod.103.017293Search in Google Scholar

Mann M.R.W., Lee S.S., Doherty A.S., Verona R.I., Nolen L.D., Schultz R.M., Bar-tolomei M.S. (2004). Selective loss of imprinting in the placenta following preimplantation development in culture. Development, 131: 3727-3735.10.1242/dev.01241Search in Google Scholar

Masala L., Burrai G.P., Bellu E., Ariu F., Bogliolo L., Ledda S., Bebbere D. (2017). Methylation dynamics during folliculogenesis and early embryo development in sheep. Reproduction, 153: 605-619.10.1530/REP-16-0644Search in Google Scholar

Miki H., Inoue K., Kohda T., Honda A., Ogonuki N., Yuzuriha M., Mise N., Ma -tsui Y., Baba T., Abe K., Ishino F., Ogura A. (2005). Birth of mice produced by germ cell nuclear transfer. Genesis, 41: 81-86.10.1002/gene.20100Search in Google Scholar

Moreira P.N., Robl J.M., Collas P. (2003). Architectural defects in pronuclei of mouse nuclear transplant embryos. J. Cell Sci., 116: 3713-3720.10.1242/jcs.00692Search in Google Scholar

Narbonne P., Miyamoto K., Gurdon J.B. (2012). Reprogramming and development in nuclear transfer embryos and in interspecific systems. Curr. Opin. Genet. Dev., 22: 450-458.10.1016/j.gde.2012.09.002Search in Google Scholar

Novak S., Paradis F., Savard C., Tremblay K., Sirard M.A. (2004). Identification of porcine oocyte proteins that are associated with somatic cell nuclei after co-incubation. Biol. Reprod., 71: 1279-1289.10.1095/biolreprod.103.027037Search in Google Scholar

Obata Y., Kono T. (2002). Maternal primary imprinting is established ataspecific time for each gene throughout oocyte growth. J. Biol. Chem., 277: 5285-5289.10.1074/jbc.M108586200Search in Google Scholar

Ogawa H., Ono Y., Shimozawa N., Sotomaru Y., Katsuzawa Y., Hiura H., Ito M., Kono T. (2003). Disruption of imprinting in cloned mouse fetuses from embryonic stem cells. Reproduction, 126: 549-557.10.1530/rep.0.1260549Search in Google Scholar

Paoloni-Giacobino A., Chaillet J.R. (2004). Genomic imprinting and assisted reproduction. Reprod. Health, 1: 6.10.1186/1742-4755-1-6Search in Google Scholar

Park K.Y., Sellars E.A., Grinberg A., Huang S.P., Pfeifer K. (2004). The H19 differentially methylated region marks the parental origin ofaheterologous locus without gametic DNA methylation. Mol. Cell. Biol., 24: 3588-3595.10.1128/MCB.24.9.3588-3595.2004Search in Google Scholar

Park M.R., Cho S.K., Lee S.Y., Choi Y.J., Park J.Y., Kwon D.N., Son W.J., Paik S.S., Kim T., Han Y.M., Kim J.H. (2005). Arare and often unrecognized cerebromeningitis and hemodynamic disorder: Amajor cause of sudden death in somatic cell cloned piglets. Proteomics, 5: 1928-1939.10.1002/pmic.200401079Search in Google Scholar

Pfister-Genskow M., Myers C., Childs L.A., Lacson J.C., Patterson T., Betthau-ser J.M., Goueleke P.J., Koppang R.W., Lange G., Fisher P., Watt S.R., Fors -berg E.J., Zheng Y., Leno G.H., Schultz R.M., Liu B., Chetia C., Yang X., Hoe-schele I., Eilertsen K.J. (2005). Identification of differentially expressed genes in individual bovine preimplantation embryos produced by nuclear transfer: improper reprogramming of genes required for development. Biol. Reprod., 72: 546-555.10.1095/biolreprod.104.031799Search in Google Scholar

Prather R.S., Ross J.W., Isom S.C., Green J.A. (2009). Transcriptional, posttranscriptional and epigenetic control of porcine oocyte maturation and embryogenesis. Soc. Reprod. Fertil. Suppl., 66: 165-176.Search in Google Scholar

Prokopuk L., Stringer J.M., Hogg K., Elgass K.D., Western P.S. (2017). PRC2 is required for extensive reorganization of H3K27me3 during epigenetic reprogramming in mouse fetal germ cells. Epigenetics Chromatin, 10: 7.10.1186/s13072-017-0113-9Search in Google Scholar

Reik W. (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 447: 425-432.10.1038/nature05918Search in Google Scholar

Reik W., Santos F., Dean W. (2003 a). Mammalian epigenomics: reprogramming the genome for development and therapy. Theriogenology, 59: 21-32.10.1016/S0093-691X(02)01269-4Search in Google Scholar

Reik W., Santos F., Mitsuya K., Morgan H., Dean W. (2003 b). Epigenetic asymmetry in the mammalian zygote and early embryo: relationship to lineage commitment? Philos. Trans. R. Soc. Lond., B, Biol. Sci., 358: 1403-1409.10.1098/rstb.2003.1326169323814511488Search in Google Scholar

Renard J.P., Zhou Q., Le Bourhis D., Chavatte-Palmer P., Hue I., Heyman Y., Vignon X. (2002). Nuclear transfer technologies: between successes and doubts. Theriogenology, 57: 203-222.10.1016/S0093-691X(01)00667-7Search in Google Scholar

Rodriguez-Osorio N., Urrego R., Cibelli J.B., Eilertsen K., Memili E. (2012). Reprogramming mammalian somatic cells. Theriogenology, 78: 1869-1886.10.1016/j.theriogenology.2012.05.030Search in Google Scholar

Ruddock N.T., Wilson K.J., Cooney M.A., Korfiatis N.A., Tecirlioglu R.T., French A.J. (2004). Analysis of imprinted messenger RNAexpression during bovine preimplantation development. Biol. Reprod., 70: 1131-1135.10.1095/biolreprod.103.022236Search in Google Scholar

Samiec M. (2005). The effect of mitochondrial genome on architectural remodeling and epigenetic reprogramming of donor cell nuclei in mammalian nuclear transfer-derived embryos. J. Anim. Feed Sci., 14: 393-422.10.22358/jafs/67034/2005Search in Google Scholar

Samiec M., Skrzyszowska M. (2005). Molecular conditions of the cell nucleus remodelling/reprogramming process and nuclear-transferred embryo development in the intraooplasmic karyoplast injection technique:areview. Czech J. Anim. Sci., 50: 185-195.10.17221/4142-CJASSearch in Google Scholar

Santos F., Zakhartchenko V., Stojkovic M., Peters A., Jenuwein T., Wolf E., Reik W., Dean W. (2003). Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr. Biol., 13: 1116-1121.10.1016/S0960-9822(03)00419-6Search in Google Scholar

Santos F., Dean W. (2004). Epigenetic reprogramming during early development in mammals. Reproduction, 127: 643-651.10.1530/rep.1.00221Search in Google Scholar

Sarmento O.F., Digilio L.C., Wang Y., Perlin J., Herr J.C., Allis C.D., Coonrod S.A. (2004). Dynamic alterations of specific histone modifications during early murine development. J. Cell Sci., 117: 4449-4459.10.1242/jcs.01328Search in Google Scholar

Seki Y., Hayashi K., Itoh K., Mizugaki M., Saitou M., Matsui Y. (2005). Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev. Biol., 278: 440-458.10.1016/j.ydbio.2004.11.025Search in Google Scholar

Selokar N.L., Saini M., Agrawal H., Palta P., Chauhan M.S., Manik R., Singla S.K. (2015). Downregulation of DNAmethyltransferase 1 in zona-free cloned buffalo (Bubalus bubalis) embryos by small interefering RNAimproves in vitro development but does not alter DNAmethylation level. Cell. Reprogram., 17: 89-94.10.1089/cell.2014.0056Search in Google Scholar

Sepulveda- Rincon L.P., Solanas Edel L., Serrano- Revuelta E., Ruddick L., Maalouf W.E., Beaujean N. (2016). Early epigenetic reprogramming in fertilized, cloned, and parthenogenetic embryos. Theriogenology, 86: 91-98.10.1016/j.theriogenology.2016.04.022Search in Google Scholar

Shi L., Wu J. (2009). Epigenetic regulation in mammalian preimplantation embryo development. Reprod. Biol. Endocrinol., 7: 59.10.1186/1477-7827-7-59Search in Google Scholar

Shi W., Zakhartchenko V., Wolf E. (2003 a). Epigenetic reprogramming in mammalian nuclear transfer. Differentiation, 71: 91-113.10.1046/j.1432-0436.2003.710201.x12641564Search in Google Scholar

Shi W., Hoeflich A., Flaswinkel H., Stojkovic M., Wolf E., Zakhartchenko V. (2003 b). Induction ofasenescent-like phenotype does not confer the ability of bovine immortal cells to support the development of nuclear transfer embryos. Biol. Reprod., 69: 301-309.10.1095/biolreprod.102.01211212646489Search in Google Scholar

Shi W., Dirim F., Wolf E., Zakhartchenko V., Haaf T. (2004). Methylation reprogramming and chromosomal aneuploidy in in vivo fertilized and cloned rabbit preimplantation embryos. Biol. Reprod., 71: 340-347.10.1095/biolreprod.103.024554Search in Google Scholar

Sim B.W., Park C.W., Kang M.H., Min KS. (2017). Abnormal gene expression in regular and aggregated somatic cell nuclear transfer placentas. BMC Biotechnol., 17: 34.10.1186/s12896-017-0355-4Search in Google Scholar

Simonsson S., Gurdon J. (2004). DNAdemethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat. Cell Biol., 6: 984-990.10.1038/ncb1176Search in Google Scholar

Srirattana K., Matsukawa K., Akagi S., Tasai M., Tagami T., Nirasawa K., Na -gai T., Kanai Y., Parnpai R., Takeda K. (2011). Constant transmission of mitochondrial DNAin intergeneric cloned embryos reconstructed from swamp buffalo fibroblasts and bovine ooplasm. Anim. Sci. J., 82: 236-243.10.1111/j.1740-0929.2010.00827.xSearch in Google Scholar

Srivastava M., Frolova E., Rottinghaus B., Boe S.P., Grinberg A., Lee E., Love P.E., Pfeifer K. (2003). Imprint control element-mediated secondary methylation imprints at the Igf2/H19 locus. J. Biol. Chem., 278: 5977-5983.10.1074/jbc.M208437200Search in Google Scholar

Vignon X., Zhou Q., Renard J.P. (2002). Chromatin asaregulative architecture of the early developmental functions of mammalian embryos after fertilization or nuclear transfer. Cloning Stem Cells, 4: 363-377.10.1089/153623002321025041Search in Google Scholar

Wang Y., Su J., Wang L., Xu W., Quan F., Liu J., Zhang Y. (2011). The effects of 5-aza-2'- deoxycytidine and trichostatin Aon gene expression and DNAmethylation status in cloned bovine blastocysts. Cell. Reprogram., 13: 297-306.10.1089/cell.2010.0098Search in Google Scholar

Wang H., Cui W., Meng C., Zhang J., Li Y., Qian Y., Xing G., Zhao D., Cao S. (2018). MC1568 enhances histone acetylation during oocyte meiosis and improves development of somatic cell nuclear transfer embryos in pig. Cell. Reprogram., 20: 55-65.10.1089/cell.2017.0023Search in Google Scholar

Whitworth K.M., Prather R.S. (2010). Somatic cell nuclear transfer efficiency: How can it be improved through nuclear remodeling and reprogramming? Mol. Reprod. Dev., 77: 1001-1015.10.1002/mrd.21242Search in Google Scholar

Wrenzycki C., Lucas- Hahn A., Herrmann D., Lemme E., Korsawe K., Nie-mann H. (2002). In vitro production and nuclear transfer affect dosage compensation of the X-linked gene transcripts G6PD, PGK, and Xist in preimplantation bovine embryos. Biol. Reprod., 66: 127-134.10.1095/biolreprod66.1.127Search in Google Scholar

Wrenzycki C., Niemann H. (2003). Epigenetic reprogramming in early embryonic development: effects of in-vitro production and somatic nuclear transfer. Reprod. Biomed. Online, 7: 649-656.10.1016/S1472-6483(10)62087-1Search in Google Scholar

Xie B., Zhang H., Wei R., Li Q., Weng X., Kong Q., Liu Z. (2016). Histone H3 lysine 27 trimethylation acts as an epigenetic barrier in porcine nuclear reprogramming. Reproduction, 151: 9-16.10.1530/REP-15-0338Search in Google Scholar

Yamanaka K., Sugimura S., Wakai T., Kawahara M., Sato E. (2009). Acetylation level of histone H3 in early embryonic stages affects subsequent development of miniature pig somatic cell nuclear transfer embryos. J. Reprod. Dev., 55: 638-644.10.1262/jrd.20245Search in Google Scholar

Yamazaki Y., Mellissa R., Mann M.R.W., Lee S.S., Marh J., Mc Carrey J.R., Yanagi -machi R., Bartolomei M.S. (2003). Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc. Natl. Acad. Sci. USA, 100: 12207-12212.10.1073/pnas.2035119100Search in Google Scholar

Yan Z.H., Zhou Y.Y., Fu J., Jiao F., Zhao L.W., Guan P.F., Huang S.Z., Zeng Y.T., Zeng F. (2010). Donor-host mitochondrial compatibility improves efficiency of bovine somatic cell nuclear transfer. BMC Dev. Biol., 10: 31.10.1186/1471-213X-10-31Search in Google Scholar

Yan H., Yan Z., Ma Q., Jiao F., Huang S., Zeng F., Zeng Y. (2011). Association between mitochondrial DNAhaplotype compatibility and increased efficiency of bovine intersubspecies cloning. J. Genet. Genomics, 38: 21-28.10.1016/j.jcg.2010.12.003Search in Google Scholar

Yang X., Smith S.L., Tian X.C., Lewin H.A., Renard J.P., Wakayama T. (2007). Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat. Genet., 39: 295-302.10.1038/ng1973Search in Google Scholar

Young L.E., Schnieke A.E., Mc Creath K.J., Wieckowski S., Konfortova G., Fer-nandes K., Ptak G., Kind A.J., Wilmut I., Loi P., Feil R. (2003). Conservation of IGF2- H19 and IGF2Rimprinting in sheep: effects of somatic cell nuclear transfer. Mech. Dev., 120: 1433-1442.10.1016/j.mod.2003.09.006Search in Google Scholar

Zhang X., Wang D., Han Y., Duan F., Lv Q., Li Z. (2014). Altered imprinted gene expression and methylation patterns in mid-gestation aborted cloned porcine fetuses and placentas. J. Assist. Reprod. Genet., 31: 1511-1517.10.1007/s10815-014-0320-2Search in Google Scholar

Zhang Z., Zhai Y., Ma X., Zhang S., An X., Yu H., Li Z. (2018). Down-regulation of H3K- 4me3 by MM-102 facilitates epigenetic reprogramming of porcine somatic cell nuclear transfer embryos. Cell. Physiol. Biochem., 45: 1529-1540.10.1159/000487579Search in Google Scholar

Zhao J., Whyte J., Prather R.S. (2010). Effect of epigenetic regulation during swine embryogenesis and on cloning by nuclear transfer. Cell Tissue Res., 341: 13-21.10.1007/s00441-010-1000-xSearch in Google Scholar

Zuo Y., Su G., Cheng L., Liu K., Feng Y., Wei Z., Bai C., Cao G., Li G. (2017). Coexpression analysis identifies nuclear reprogramming barriers of somatic cell nuclear transfer embryos. Oncotarget, 8: 65847-65859.10.18632/oncotarget.19504Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine