Open Access

New Polymorphisms in Regulatory Region of CAPN3 Gene with no Effect on Gene Expression in Breast Muscle of Broiler Chickens


Cite

Barendse W., Harrison B.E., Bunch R.J., Thomas M.B. (2008). Variation at the calpain 3 gene is associated with meat tenderness in zebu and composite breeds of cattle. BMC Genet., 9: 41–48.Search in Google Scholar

Barrett C.W., Smith J.J., Lu L.C., Markham N., Stengel K.R., Short S.P., Zhang B., Hunt A.A., Fingleton B.M., Carnahan R.H., Engel M.E., Chen X., Beauchamp R.D., Wilson K.T., Hiebert S.W., Reynolds A.B., Williams C.S. (2012). Kaiso directs the transcriptional corepressor MTG16 to the Kaiso binding site in target promoters. PLoS One, 7(12): e51205.Search in Google Scholar

Bartel D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136: 215–233.Search in Google Scholar

Bertrand E., Chartrand P., Schaefer M., Shenoy S.M., Singer R.H., Long R.M. (1998). Localization of ASH1mRNA particles in living yeast. Mol. Cell., 2: 437–445.Search in Google Scholar

Chang T.H., Huang H.Y., Hsu J.B., Weng S.L., Horng J.T., Huang H.D. (2013). An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinformatics, 14 Suppl 2: S4.Search in Google Scholar

Chatterjee S., Pal J.K. (2009). Role of 5’- and 3’-untranslated regions of mRNAs in human diseases. Biol. Cell., 101: 251–262.Search in Google Scholar

Chomczyń ski P. (1993). A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques, 15: 532–537.Search in Google Scholar

Davuluri R.V., Suzuki Y., Sugano S., Plass C., Huang T.H. (2008). The functional consequences of alternative promoter use in mammalian genomes. Trends Genet., 24: 167–177.Search in Google Scholar

Duan Z.J., Fang X., Rohde A., Han H., Stamatoyannopoulos G., Li Q. (2002). Developmental specificity of recruitment of TBP to the TATA box of the human gamma-globin gene. Proc. Natl. Acad. Sci., 99: 5509–5514.Search in Google Scholar

Eckner R., Ewen M.E., Newsome D., Gerdes M., De Caprio J.A., Lawrence J.B., Livingston D.M. (1994). Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev., 8: 869–884.Search in Google Scholar

Everett L., Hansen M., Hannenhalli S. (2010). Regulating the regulators: modulators of transcription factor activity. Methods Mol. Biol., 674: 297–312.Search in Google Scholar

Felí cio A.M., Boschiero C., Balieiro J.C., Ledur M.C., Ferraz J.B., Filho M.T., Moura A.S., Coutinho L.L. (2013). Identification and association of polymorphisms in CAPN1 and CAPN3 candidate genes related to performance and meat quality traits in chickens. Genet. Mol. Res., 12: 472–482.Search in Google Scholar

Gandolfi G., Pomponio L., Ertbjerg P., Karlsson A.H., Nanni Costa L., Lametsch R., Russo V., Davoli R. (2011). Investigation on CAST, CAPN1 and CAPN3 porcine gene polymorphisms and expression in relation to post-mortem calpain activity in muscle and meat quality. Meat Sci., 88: 694–700.Search in Google Scholar

Geesink G.H., Taylor R.G., Koohmaraie M., (2005). Calpain 3/p94 is not involved in postmortem proteolysis. J. Anim. Sci., 83: 1646–1652.Search in Google Scholar

Gronemeyer H., Gustafsson J.A., Laudet V. (2004). Principles for modulation of the nuclear receptor superfamily. Nat. Rev. Drug Discov., 3: 950–964.Search in Google Scholar

Heinemeyer T., Wingender E., Reuter I., Hermjakob H., Kel A.E., Kel O.V., Ignatieva E.V., Ananko E.A., Podkolodnaya O.A., Kolpakov F.A., Pod kolodny N.L., Kolchanov N.A. (1998). Databases on Transcriptional Regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res., 26: 364–370.Search in Google Scholar

Hou G., Zeng H., Wang D.G., Huang X., Xu S. (2010). Genetic variation in CAPN3 gene and its relationship with carcass traits in cattle. Chin. J. Anim. Vet. Sci., 41: 398–402Search in Google Scholar

Huang Y., Wang K.K.W. (2001). The calpain family and human disease. Trends Mol. Med., 7: 355–362.Search in Google Scholar

Ilian M.A., Morton J.D., Kent M.P., Le Couteur C.E., Hickfo rd J., Cowley R., Bickerstaffe R. (2001). Intermuscular variation in tenderness: Association with the ubiquitous and muscle-specific calpains. J. Anim. Sci., 79: 122-132.Search in Google Scholar

Kawabe K., Maeda Y., Okamoto S., Hashiguchi T. (1997). Correlation between skeletal muscle calpain activity and fractional rate of muscle degradation of Japanese quail, Coturnix coturnix japonica. Jpn. Poultry Sci., 34: 231–239.Search in Google Scholar

Kemp C.M., Sensky P.L., Bardsley R.G., Buttery P.J., Parr T. (2010). Tenderness– an enzymatic view. Meat Sci., 84: 248-256.Search in Google Scholar

Levine M., Tjian R. (2003). Transcription regulation and animal diversity. Nature, 424: 147–151.Search in Google Scholar

Lin H. (2007). piRNA in Germ Line. Science, 316, p. 397.10.1126/science.113754317446387Search in Google Scholar

Loots G., Ovcharenko I. (2004). rVista 2.0: evolutionary analysis of transcription factor binding sites. Nucleic Acids Res., 32: 217–221.Search in Google Scholar

Pió rkowska K., Oczkowicz M., Różycki M., Ropka-Molik K., Piestrzyń ska-Kajtoch A. (2011). Novel porcine housekeeping genes for real-time RT-PCR experiments normalization in adipose tissue: assessment of leptin mRNA quantity in different pig breeds. Meat. Sci., 87: 191–195.Search in Google Scholar

Poussard S., Duvert M., Balcerzak D., Ramassamy S., Brustis J.J., Cottin P., Ducastaing A. (1996). Evidence for implication of muscle-specific calpain (p94) in myofibrillar integrity. Cell Growth Differ., 7: 1461–1469.Search in Google Scholar

Sorimachi H., Suzuki K. (2001). The structure of calpain. J. Biochem., 129: 653–664.Search in Google Scholar

Suzuki K., Sorimachi H., Yoshizawa T., Kimbara K., Ishiura S. (1995). Calpain: novel family members. activation and physiological function. Biol. Chem. Hoppe Seyler., 376: 523–529.Search in Google Scholar

Suzuki K., Hata S., Kawabata Y., Sorimachi H. (2004). Structure, activation and biology of calpain. Diabetes, 53, Suppl. 1: 12–18.Search in Google Scholar

Teufel D.P., Freund S.M., Bycroft M., Fersht A.R. (2007). Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53. Proc. Natl. Acad. Sci. USA., 104: 7009–7014.Search in Google Scholar

Zhang Z.R., Liu Y.P., Yao Y.G., Jiang X.S., Du H.R., Zhu Q. (2009). Identification and association of the single nucleotide polymorphisms in calpain3 (CAPN3) gene with carcass traits in chickens. BMC Genet., 10, p. 10.10.1186/1471-2156-10-10265652219265533Search in Google Scholar

Zhang Z.R., Zhu Q., Yao Y.G., Jiang X.S., Du H.R., Liu Y.P. (2012). Characterization of the expression profile of calpain-3 (CAPN3) gene in chickens. Mol. Biol. Rep., 39: 3517–3521.Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine