Open Access

Mixed-Mode Oscillations Based on Complex Canard Explosion in a Fractional-Order Fitzhugh-Nagumo Model.


Cite

Hodgkin, A.L., Huxley, A.F. (1952), A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117, 500–544.HodgkinA.L.HuxleyA.F.1952A quantitative description of membrane current and its application to conduction and excitation in nerveJ. Physiol.11750054410.1113/jphysiol.1952.sp004764Search in Google Scholar

Forrest, M. D. (2014), Can the thermodynamic Hodgkin-Huxley model of voltage-dependent conductance extrapolate for temperature ?, Computation, 2, 47–60.ForrestM. D.2014Can the thermodynamic Hodgkin-Huxley model of voltage-dependent conductance extrapolate for temperature ?Computation2476010.3390/computation2020047Search in Google Scholar

Shilnikov, A. L., Rulkov, N.F. (2003), Origin of chaos in a two-dimensional map modelling spiking-bursting neural activity, International Journal of Bifurcation and Chaos, 13, 3325–3340.ShilnikovA. L.RulkovN.F.2003Origin of chaos in a two-dimensional map modelling spiking-bursting neural activityInternational Journal of Bifurcation and Chaos133325334010.1142/S0218127403008521Search in Google Scholar

Shilnikov, A. L., Kolomiets, M. (2008), Methods of the qualitative theory for the Hindmarsh-Model: A case study. A Tutorial, International Journal of Bifurcation and Chaos, 18, 2141–2168.ShilnikovA. L.KolomietsM.2008Methods of the qualitative theory for the Hindmarsh-Model: A case studyA Tutorial, International Journal of Bifurcation and Chaos182141216810.1142/S0218127408021634Search in Google Scholar

Fitzhugh, R. (1961), Impulses and physiological states in theoretical models of nerve membrane, Biophys. J. 1, 445–466.FitzhughR.1961Impulses and physiological states in theoretical models of nerve membraneBiophys. J.144546610.1016/S0006-3495(61)86902-6Search in Google Scholar

Hindmarsh, J.L., Rose, R.M. (1982), A model of the nerve impulse using two first-order differential equations, Nature, 296, 162–164.HindmarshJ.L.RoseR.M.1982A model of the nerve impulse using two first-order differential equationsNature29616216410.1038/296162a07063018Search in Google Scholar

Hindmarsh, J.L., Rose, R.M. (1984), A model of neuronal bursting using three coupled first order differential equations, Proc. R. Soc. London B. 221, 87–102.HindmarshJ.L.RoseR.M.1984A model of neuronal bursting using three coupled first order differential equationsProc. R. Soc. London B.2218710210.1098/rspb.1984.00246144106Search in Google Scholar

Perko, L. (2002), Differential Equations and Dynamical Systems, Springer, New York.PerkoL.2002Differential Equations and Dynamical SystemsSpringerNew York10.1007/978-1-4613-0003-8Search in Google Scholar

Liu, Y., Xie, Y., Kang, Y., Tan, N., Jiang, J., Xu, J.X. (2010), Dynamical characteristics of the fractional-order Fitzhugh-Nagumo model neuron, Advances in Cognitive Neurodynamics (II), In: Wang R., Gu Fanji (eds.), pp. 253–258, Springer, Dordrecht (2010).LiuY.XieY.KangY.TanN.JiangJ.XuJ.X.2010Dynamical characteristics of the fractional-order Fitzhugh-Nagumo model neuron, Advances in Cognitive Neurodynamics (II)In:WangR.Gu Fanji(eds.),253258SpringerDordrecht201010.1007/978-90-481-9695-1_39Search in Google Scholar

Momani, S. A. Freihat, M. Al-Smadi (2014), Analytical study of fractional-order multiple chaotic Fitzhugh-Nagumo neurons model using multistep generalized differential transform method, Abstract Appl. Anal. 24, ID 276279.MomaniS. A. FreihatAl-SmadiM.2014Analytical study of fractional-order multiple chaotic Fitzhugh-Nagumo neurons model using multistep generalized differential transform methodAbstract Appl. Anal.24ID 276279.10.1155/2014/276279Search in Google Scholar

Armanyos, M., Radwan, A.G. (2016), Fractional-order Fitzhugh-Nagumo and Izhikevich neuron models, Proc. 13th Int. Conf. on Elect. Engin./Electron., Computer, Telecomm. Info. Tech. (ECTI-CON), pp. 1–5.ArmanyosM.RadwanA.G.2016Fractional-order Fitzhugh-Nagumo and Izhikevich neuron modelsProc. 13th Int. Conf. on Elect. Engin./Electron., Computer, Telecomm. Info. Tech. (ECTI-CON)1510.1109/ECTICon.2016.7561406Search in Google Scholar

Alidousti, J., Khoshsiar Ghaziani, R. (2017), Spiking and bursting of a fractional-order of the modified Fitzhugh-Nagumo neuron model, Math. Models Comp. Simul. 9(3), 390–403.AlidoustiJ.Khoshsiar GhazianiR.2017Spiking and bursting of a fractional-order of the modified Fitzhugh-Nagumo neuron modelMath. Models Comp. Simul.9339040310.1134/S2070048217030036Search in Google Scholar

Tavazoei, M. S., Haeri, M. (2009), A proof for non-existence of periodic solutions in time invariant fractional-order systems, Automatica, 45, 1886–1890.TavazoeiM. S.HaeriM.2009A proof for non-existence of periodic solutions in time invariant fractional-order systemsAutomatica451886189010.1016/j.automatica.2009.04.001Search in Google Scholar

Abdelouahab M-S, Lozi R, Chen G. (2019), Complex canard explosion in a fractional-order Fitzhugh-Nagumo model. Int. J. Bifurc. Chaos, 29(8): 1950111–1950133.AbdelouahabM-SLoziRChenG.2019Complex canard explosion in a fractional-order Fitzhugh-Nagumo modelInt. J. Bifurc. Chaos2981950111195013310.1142/S0218127419501116Search in Google Scholar

Zhabotinsky, A. M., (1964), Periodic kinetics of oxidation of malonic acid in solution, Biofizika, 9, 306–311.ZhabotinskyA. M.1964Periodic kinetics of oxidation of malonic acid in solutionBiofizika9306311Search in Google Scholar

Brøns, M., Krupa, M., Wechselberger, M., (2006), Mixed mode oscillations due to the generalized canard phenomenon, Fields Institute Communications, 49, 39–63.BrønsM.KrupaM.WechselbergerM.2006Mixed mode oscillations due to the generalized canard phenomenonFields Institute Communications49396310.1090/fic/049/03Search in Google Scholar

Cartier, P., (1982), Perturbations singuliéres des équations différentielles ordinaires et analyse non-standard, Astérisque, tome 92–93, Séminaire Bourbaki, exp. no 580, p. 21–44.CartierP.1982Perturbations singuliéres des équations différentielles ordinaires et analyse non-standard, Astérisquetome 92–93, Séminaire Bourbaki, exp. no 580,2144Search in Google Scholar

Benoît, E., Callot, J. F., Diener, F., Diener, M. (1981), Chasse au canard, Collect. Math. 31, 37–119.BenoîtE.CallotJ. F.DienerF.DienerM.1981Chasse au canardCollect. Math.3137119Search in Google Scholar

Desroches, M., Jeffrey, M. R. (2011), Canards and curvature: The smallness of ɛ in slow-fast dynamics, Proc. Roy. Soc., A 467, 2404–2421.DesrochesM.JeffreyM. R.2011Canards and curvature: The smallness of ɛ in slow-fast dynamicsProc. Roy. Soc., A4672404242110.1098/rspa.2011.0053Search in Google Scholar

Van der Pol, B. (1926), On relaxation oscillations, London, Edinburgh, and Dublin Phil. Mag. J. Sci. 7, 978–992.Van der PolB.1926On relaxation oscillationsLondon, Edinburgh, and Dublin Phil. Mag. J. Sci.797899210.1080/14786442608564127Search in Google Scholar

Wechselberger, M. (2012), À propos de canards (A propos canards), Trans. Am. Math. Soc. 364, 3289–3309.WechselbergerM.2012À propos de canards (A propos canards)Trans. Am. Math. Soc.3643289330910.1090/S0002-9947-2012-05575-9Search in Google Scholar

Shchepakina, E., Sobolev, V., Mortell, M.P. (2014), Singular Perturbations: Introduction to System Order Reduction Methods with Applications, Lecture Notes in Mathematics, Springer.ShchepakinaE.SobolevV.MortellM.P.2014Singular Perturbations: Introduction to System Order Reduction Methods with Applications, Lecture Notes in MathematicsSpringer10.1007/978-3-319-09570-7Search in Google Scholar

Ermentrout, G. B., Wechselberger, M. (2009), Canards, clusters, and synchronization in a weakly coupled interneuron model, SIAM J. Appl. Dyn. Syst., 8, 253–278.ErmentroutG. B.WechselbergerM.2009Canards, clusters, and synchronization in a weakly coupled interneuron modelSIAM J. Appl. Dyn. Syst.825327810.1137/080724010Search in Google Scholar

Rubin, J., Wechselberger, M. (2008), The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple timescales, Chaos, 18, 015105.RubinJ.WechselbergerM.2008The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple timescalesChaos18015105.10.1063/1.278956418377086Search in Google Scholar

Guckenheimer, J., Scheper, C. (2013), Multiple time scale analysis of a model Belousov-Zhabotinskii reaction, SIAM J. Appl. Dyn. Syst., 12, 1968–1996.GuckenheimerJ.ScheperC.2013Multiple time scale analysis of a model Belousov-Zhabotinskii reactionSIAM J. Appl. Dyn. Syst.121968199610.1137/130912840Search in Google Scholar

Marino, F., Ciszak, M., Abdalah, S. F., Al-Naimee, K., Meucci, R., Arecchi, F. T. (2011), Mixed-mode oscillations via canard explosions in light-emitting diodes with optoelectronic feedback, Phys. Rev. E 84, 047201.MarinoF.CiszakM.AbdalahS. F.Al-NaimeeK.MeucciR.ArecchiF. T.2011Mixed-mode oscillations via canard explosions in light-emitting diodes with optoelectronic feedbackPhys. Rev. E84047201.10.1103/PhysRevE.84.047201Search in Google Scholar

Rinzel, J., Miller, R. (1980), Numerical calculation of stable and unstable periodic solutions to the Hodgkin-Huxley equations, Math. Biosci., 49, 27–59.RinzelJ.MillerR.1980Numerical calculation of stable and unstable periodic solutions to the Hodgkin-Huxley equationsMath. Biosci.49275910.1016/0025-5564(80)90109-1Search in Google Scholar

Rubin, J., Wechselberger, M. (2007), Giant squid-hidden canard: The 3D geometry of the Hodgkin Huxley model, Biol. Cybern., 97, 5–32.RubinJ.WechselbergerM.2007Giant squid-hidden canard: The 3D geometry of the Hodgkin Huxley modelBiol. Cybern.9753210.1007/s00422-007-0153-5Search in Google Scholar

Leibniz, G.W. (1962), Leibnizens mathematische Schriften, Georg Ohms Verlagsbuch Handlung Hildesheim.LeibnizG.W.1962Leibnizens mathematische SchriftenGeorg Ohms Verlagsbuch Handlung Hildesheim.Search in Google Scholar

Bagley, R. L., Calico, R. A. (1991), Fractional-Order state equations for the control of viscoelastically damped structures, J. Guid. Contr. Dyn., 14, 304–311.BagleyR. L.CalicoR. A.1991Fractional-Order state equations for the control of viscoelastically damped structuresJ. Guid. Contr. Dyn.1430431110.2514/6.1989-1213Search in Google Scholar

Ichise, M., Nagayanagi, Y., Kojima, T. (1971), An analog simulation of noninteger order transfer functions for analysis of electrode process, J. Electro. Chem., 33, 253–65.IchiseM.NagayanagiY.KojimaT.1971An analog simulation of noninteger order transfer functions for analysis of electrode processJ. Electro. Chem.332536510.1016/S0022-0728(71)80115-8Search in Google Scholar

Heaviside, O. (1971), Electromagnetic Theory, Chelsea, New York.HeavisideO.1971Electromagnetic TheoryChelseaNew YorkSearch in Google Scholar

Kusnezov, D., Bulgac, A., Dang, G. D. (1999), Quantum levy processes and fractional kinetics, Phys. Rev. Lett., 82, 1136–1139.KusnezovD.BulgacA.DangG. D.1999Quantum levy processes and fractional kineticsPhys. Rev. Lett.821136113910.1103/PhysRevLett.82.1136Search in Google Scholar

Podlubny, I. (1999), Fractional Differential Equations Academic Press, San Diego.PodlubnyI.1999Fractional Differential EquationsAcademic PressSan DiegoSearch in Google Scholar

Samko, S.G., Kilbas, A.A., Marichev, O.I. (1993), Fractional integrals and derivatives: Theory and Applications, Gordan and Breach, Amsterdam.SamkoS.G.KilbasA.A.MarichevO.I.1993Fractional integrals and derivatives: Theory and ApplicationsGordan and BreachAmsterdamSearch in Google Scholar

Butzer, P.L., Westphal, U. (2000), An introduction to fractional calculus, In: R. Hilfer (ed.), Applications of Fractional Calculus in Physics, World Scientific, Singapore, pp. 1–85.ButzerP.L.WestphalU.2000An introduction to fractional calculusIn:HilferR.(ed.),Applications of Fractional Calculus in PhysicsWorld ScientificSingapore18510.1142/9789812817747_0001Search in Google Scholar

Caputo, M. (1967), Linear models of dissipation whose Q is almost frequency independent-II, Geophys J. R. Astron. Soc. 13, 529–539.CaputoM.1967Linear models of dissipation whose Q is almost frequency independent-IIGeophys J. R. Astron. Soc.1352953910.1111/j.1365-246X.1967.tb02303.xSearch in Google Scholar

Nagumo, J., Arimoto, S., Yoshizawa, S. (1962), An active pulse transmission line simulating nerve axon, Proc. IRE 50, 2061–2070.NagumoJ.ArimotoS.YoshizawaS.1962An active pulse transmission line simulating nerve axonProc. IRE502061207010.1109/JRPROC.1962.288235Search in Google Scholar

Jonscher, A. K. (1983), Dielectric Relaxation in Solids Chelsea Dielectric Press, London.JonscherA. K.1983Dielectric Relaxation in SolidsChelsea Dielectric PressLondonSearch in Google Scholar

Westerlund, S., Ekstam, S. (1994), Capacitor theory, IEEE Trans. Dielectr. Electr. Insul. 1, 826–839.WesterlundS.EkstamS.1994Capacitor theoryIEEE Trans. Dielectr. Electr. Insul.182683910.1109/94.326654Search in Google Scholar

Westerlund, S. (1991), Dead matter has memory!, Physica Scripta, 43, 174.WesterlundS.1991Dead matter has memory!Physica Scripta4317410.1088/0031-8949/43/2/011Search in Google Scholar

Abdelouahab, M-S., Hamri, N.E., Wang, J. (2010), Chaos control of a fractional-order financial system, Math. Probl. in Eng. ID 270646, 1–18.AbdelouahabM-S.HamriN.E.WangJ.2010Chaos control of a fractional-order financial systemMath. Probl. in Eng. IDID 270646,11810.1155/2010/270646Search in Google Scholar

Tavazoei, M-S. (2010), A note on fractional-order derivatives of periodic functions, Automatica, 46, 945–948.TavazoeiM-S.2010A note on fractional-order derivatives of periodic functionsAutomatica4694594810.1016/j.automatica.2010.02.023Search in Google Scholar

Kaslik, E., Sivasundaram, S. (2012), Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions, Nonl. Anal.: Real World Appl. 13, 1489–1497.KaslikE.SivasundaramS.2012Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functionsNonl. Anal.: Real World Appl.131489149710.1016/j.nonrwa.2011.11.013Search in Google Scholar

Kang, Y.M., Xie, Y., Lu, J. C., Jiang, J. (2015), On the non-existence of non-constant exact periodic solutions in a class of the Caputo fractional-order dynamical systems, Nonlin. Dyn. 82, 1259–1267.KangY.M.XieY.LuJ. C.JiangJ.2015On the non-existence of non-constant exact periodic solutions in a class of the Caputo fractional-order dynamical systemsNonlin. Dyn.821259126710.1007/s11071-015-2232-9Search in Google Scholar

Abdelouahab, M-S., Hamri, N. E., Wang, J. W. (2012), Hopf bifurcation and chaos in fractional-order modified hybrid optical system, Nonlin. Dyn. 69, 275–284.AbdelouahabM-S.HamriN. E.WangJ. W.2012Hopf bifurcation and chaos in fractional-order modified hybrid optical systemNonlin. Dyn.6927528410.1007/s11071-011-0263-4Search in Google Scholar

Bourafa, S., Abdelouahab, M-S., Moussaoui A. (2020), On some extended Routh-Hurwitz conditions for fractional-order autonomous systems of order α ∈ [0, 2) and their applications to some population dynamic models, Chaos, Solitons and Fractals, 109623.BourafaS.AbdelouahabM-S.MoussaouiA.2020On some extended Routh-Hurwitz conditions for fractional-order autonomous systems of order α ∈ [0, 2) and their applications to some population dynamic models, Chaos, Solitons and Fractals109623.10.1016/j.chaos.2020.109623Search in Google Scholar

Abdelouahab, M. S., Hamri, N. E. (2016), The Grünwald-Letnikov fractional-order derivative with fixed memory length, Mediterr. J. Math. 13, 557–572.AbdelouahabM. S.HamriN. E.2016The Grünwald-Letnikov fractional-order derivative with fixed memory lengthMediterr. J. Math.1355757210.1007/s00009-015-0525-3Search in Google Scholar

Matignon, D. (1996), Stability results in fractional differential equation with applications to control processing, Proc. multiconf. comput. Eng. in Syst. Appl. (IMICS), IEEE-SMC. 2, 963–968.MatignonD.1996Stability results in fractional differential equation with applications to control processingProc. multiconf. comput. Eng. in Syst. Appl. (IMICS), IEEE-SMC2963968Search in Google Scholar

Moze, M., Sabatier, J. (2005), LMI tools for stability analysis of fractional systems, Proc. ASME Int. Design Eng. Tech. Conf. & Comput. Infor. in Eng. Conf., Long Beach, CA, 24–28 Sept.MozeM.SabatierJ.2005LMI tools for stability analysis of fractional systemsProc. ASME Int. Design Eng. Tech. Conf. & Comput. Infor. in Eng. Conf.Long Beach, CA24–28 Sept.10.1115/DETC2005-85182Search in Google Scholar

S. Strogatz, (1994), Nonlinear dynamics and chaos : with applications to physics, biology, chemistry, and engineering, Perseus Books Publishing.StrogatzS.1994Nonlinear dynamics and chaos : with applications to physics, biology, chemistry, and engineeringPerseus Books Publishing10.1063/1.4823332Search in Google Scholar

Mendes, E. M., Nepomuceno, E. G. (2016), A very simple method to calculate the (positive) largest Lyapunov exponent using interval extensions. International Journal of Bifurcation and Chaos, 26(13), 1650226.MendesE. M.NepomucenoE. G.2016A very simple method to calculate the (positive) largest Lyapunov exponent using interval extensionsInternational Journal of Bifurcation and Chaos26131650226.10.1142/S0218127416502266Search in Google Scholar

eISSN:
2444-8656
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics