Open Access

Existence of solution for Mean-field Reflected Discontinuous Backward Doubly Stochastic Differential Equation


Cite

Introduction

The theory of nonlinear backward stochastic differential equations (BSDEs in short) have been first introduced by Pardoux and Peng [6] (1990). They proved the existence and uniqueness of the adapted processes (Y,Z), solution of the following equation: Yt=ξ+tTf(s,Ys,Zs)dstTZsdWs,0tT,Y_{t}=\xi +\int_{t}^{T}f\left(s,Y_{s},Z_{s}\right) ds-\int_{t}^{T}Z_{s}dW_{s},\qquad 0\leq t\leq T, where the terminal value ξ is square integrable and the coefficient f is uniformly Lipschitz in (y, z), several authors interested in weakening this assumption; In [5] (1997), the authers prove the existence of a solution for one dimensional backward stochastic differential equations where the coefficient is continuous and it has a linear growth, they also obtain the existence of a minimal solution. In [3] (2008) the author prove the existence of the solution to BSDEs whose coefficient may be discontinuous in y and continuous in z.

A new kind of backward stochastic differential equations was introduced by Pardoux and Peng [7] in (1994) which is a class of backward doubly stochastic differential equation (BDSDE for short) of the form: Yt=ξ+tTf(s,Ys,Zs)ds+tTg(s,Ys,Zs)dBstTZsdWs,0tT,Y_{t}=\xi +\int_{t}^{T}f\left(s,Y_{s},Z_{s}\right) ds+\int_{t}^{T}g\left(s,Y_{s},Z_{s}\right) d\overleftarrow{B}_{s}-\int_{t}^{T}Z_{s}dW_{s},\qquad 0\leq t\leq T, with two different directions of stochastic integrals, i.e., the equation involves both a standard (forward) stochastic integral dWt and a backward stochastic integral dBt and ξ is a random variable termed the terminal condition.

After the authors have proved an existence and unique solution when f and g are uniform Lipschitz, several authors interested to weakening this assumption, see [4]. In [9](2005) the authors obtained the existence of the solution of BDSDE under continuous assumption and gave the comparison theorem for one dimensional BDSDE.

On the other hand Bahlali et al [1] (2009) introduced a special class of reflected BDSDEs (RBDSDEs in short) which is a BDSDE but the solution is forced to stay above a lower barrier. In particular, a solution of such equation is a triplet of processes (Y,Z,K) satisfying Yt=ξ+tTf(s,Ys,Zs)ds+tTg(s,Ys,Zs)dBs+tTdKstTZsdWs,t[0,T],Y_{t}=\xi+\int_{t}^{T}f(s,Y_{s},Z_{s})ds+\int_{t}^{T}g(s,Y_{s},Z_{s})dB_{s}+\int_{t}^{T}dK_{s}-\int_{t}^{T}Z_{s}dW_{s},\quad t\in \left[ 0,T\right], and YtSt a.s. for any t ∈ [0, T ]. The role of the nondecreasing continuous process (Kt)t∈ [0, T] is to puch upward the process Y in order to keep it above S, it satisfies the skorohod condition 0T(YsSs)dKs=0.\int_{0}^{T}\left(Y_{s}-S_{s}\right) dK_{s}=0.

In this paper, motivated by the above results and by the result introduced by Xu, R. (2012) [10], we establish the existence of the a minimal solution to the following reflected MF-BDSDE, Yt=ξ+tTE'(f(s,ω,ω',Ys,(Ys)',Zs,(Zs)'))ds+tTdKs+tTE'(g(s,ω,ω',Ys,(Ys)',Zs,(Zs)'))dBstTZsdWs,0tT,\matrix{{Y_{t}=\xi +\int_{t}^{T}E^{^{\prime}}\left(f(s,\omega,\omega^{^{\prime}},Y_{s},\left(Y_{s}\right)^{^{\prime}},Z_{s},\left(Z_{s}\right)^{^{\prime}})\right) ds+\int_{t}^{T}dK_{s}} \hfill &\cr +\int_{t}^{T}E^{^{\prime}}\left(g(s,\omega,\omega^{^{\prime}},Y_{s},\left(Y_{s}\right)^{^{\prime}},Z_{s},\left(Z_{s}\right)^{^{\prime}})\right) d\overleftarrow{B}_{s}-\int_{t}^{T}Z_{s}dW_{s},\quad0\leq t\leq T,\hfill &\cr} whose coefficient may be discontinuous in y and continuous in z.

In Section 2, we give some preliminaries about MF-BDSDE with one continuous barrier.

In Section 3, under certain assumptions, we obtain the existence for a minimal solution to the Mean-field backward doubly stochastic differential equation with one continuous barrier and discontinuous generator (left-continuous).

Framework

Let (Ω, , P) be a complete probability space. For T > 0, let {Wt, 0 ≤ tT} and {Bt, 0 ≤ tT} be two independent standard Brownian motion defined on (Ω, , P) with values in ℝd and ℝ, respectively.

Let tW:=σ(Ws;0st)\mathcal{F}_{t}^{W}:=\sigma (W_{s};0\leq s\leq t) , and t,TB:=σ(BsBt;tsT)\mathcal{F}_{t,T}^{B}:=\sigma (B_{s}-B_{t};t\leq s\leq T), , completed with P-null sets. We put, t:=tWt,TB.\mathcal{F}_{t}:=\mathcal{F}_{t}^{W}\vee \mathcal{F}_{t,T}^{B}. It should be noted that (t) is not an increasing family of sub σ–fields, and hence it is not a filtration.

Let (Ω¯,¯,P¯)=(Ω×Ω,tt,PP)\left(\bar{\Omega},\mathcal{\bar{F}},\bar{P}\right) =\left(\Omega \times \Omega,\mathcal{F}_{t}\mathcal{\otimes F}_{t},P\mathcal{\otimes}P\right) be the (non-completed) product of (Ω , P) with itself. We denote the filtration of this product space by ¯={¯t=tt,0tT}\mathcal{\bar{F}=}\left\{\mathcal{\bar{F}}_{t}=\mathcal{F}_{t}\mathcal{\otimes F}_{t},0\leq t\leq T\right\} .

A random variable ξL0 (Ω, , P;ℝn) originally defined on Ω is extended canonically to Ω¯:ξ´(ω´,ω)=ξ(ω´),(ω´,ω)Ω¯=Ω×Ω.\bar{\Omega}\colon \acute{\xi}\left(\acute{\omega},\omega \right) =\xi \left(\acute{\omega}\right),\left(\acute{\omega},\omega \right) \in \bar{\Omega}=\Omega \times \Omega .

For every θL1(Ω¯,¯,P¯)\theta \in L^{1}\left(\bar{\Omega},\mathcal{\bar{F}},\bar{P}\right) , the variable θ (·, ω) : Ω → ℝ belongs to L1(Ω¯,¯,P¯)L^{1}\left(\bar{\Omega},\mathcal{\bar{F}},\bar{P}\right) , P ()−a.s,. We denote its expectation by É(θ(,ω))=Ωθ(ω´,ω)P(dω´)\acute{E}\left(\theta \left(\cdot,\omega \right) \right) =\int_{\Omega}\theta\left(\acute{\omega},\omega \right) P\left(d\acute{\omega}\right)

Notice that {É(θ)=É(θ(,ω))L1(Ω,,P)andE¯(θ)=Ω¯θdP¯=ΩÉ(θ(,ω))P(dω)=E(É(θ)).\left\{{\matrix{\acute{E}\left(\theta \right) =\acute{E}\left(\theta \left(\cdot,\omega\right) \right) \in L^{1}\left(\Omega,\mathcal{F},P\right) \hfill \\ \text{and} \hfill \\ \bar{E}\left(\theta \right) =\int_{\bar{\Omega}}\theta d\bar{P}=\int_{\Omega}\acute{E}\left(\theta \left(\cdot,\omega \right) \right)P\left(d\omega \right) =E\left(\acute{E}\left(\theta \right) \right).}}\right.

We consider the following spaces of processus:

Let ℳ2 (0, T, ℝd) denote the set of d– dimensional, t– progressively measurable processes {φt;t ∈ [0, T ]}, such that 𝔼0T|φt|2dt<\mathbb{E}\int_{0}^{T}\left\vert \varphi_{t}\right\vert^{2}dt<\infty .

We denote by 𝒮2 (0, T, ℝd), the set of t– adapted cádlág processes {φt; t ∈ [0, T]}, which satisfy 𝔼(sup0 ≤ t ≤ T|φt|2) < ∞.

𝒜2 set of continuous, increasing, t-adapted process K: [0, T] × Ω → [0, +∞) with K0 = 0 and 𝔼(KT)2 < +∞.

𝕃2 set of T- measurable random variables ξ :Ω → ℝ with 𝔼 |ξ|2 < +∞.

Definition 1

A solution of equation (2) is a triple (Y, Z, K) which belongs to the space 𝒮2 (0, T, ℝd) × ℳ2 (0, T, ℝd) × 𝒜2 and satisfies (2) such that: {StYt,0tT,0T(YsLs)dKs=0.\left\{\matrix{S_{t}\leq Y_{t},\text{}0\leq t\leq T, \\ \int_{0}^{T}\left(Y_{s}-L_{s}\right) dK_{s}=0.}\right.

Remark 1

In the case where S = −∞ (i.e., MF-BDSDEs without lower barrier), the process K has no effect i.e., K ≡ 0.

Remark 2

In the setup of system (2) the process S (·) play the role of reflecting barrier.

Remark 3

The state process Y (·) is forced to stay above the lower barrier S (·), thanks to the action of the increasing reflection process K (·).

The coefficient of mean-field Reflected BDSDE is a function. We assume that f and g satisfy the following assumptions on the data (ξ, f, g, S):

(H.1) The terminal value ξ be a given random variable in 𝕃2.

(H.2) (St)t ≥ 0, is a continuous progressively measurable real valued process satisfying 𝔼(sup0tT(St+)2)<+,whereSt+:=max(St,0).\mathbb{E}\left({\rm {sup}}_{0\leq t\leq T}\left(S_{t}^{+}\right)^{2}\right)<+\infty, \qquad {\rm where} \qquad S_{t}^{+}:=\max \left(S_{t},0\right).

(H.3) For t ∈ [0, T], STξ, ℙ-almost surely.

(H.4)f : Ω × [0, T] × ℝ × ℝ × ℝd × ℝd → ℝ; g : Ω × [0, T] × ℝ × ℝ × ℝd × ℝd → ℝk be jointly measurable such that for any (y, y, z, z) ∈ ℝ × ℝ × ℝd × ℝd, {f(,ω,y,y',z,z')2(0,T,d),andg(,ω,y,y',z,z')2(0,T,d).\left\{\matrix{f(\cdot,\omega,y,y^{^{\prime}},z,z^{^{\prime}})\in \mathcal{M}^{2}\left(0,T,\mathbb{R}^{d}\right),\\ \text{and} \\ g(\cdot,\omega,y,y^{^{\prime}},z,z^{^{\prime}})\in \mathcal{M}^{2}\left(0,T,\mathbb{R}^{d}\right).}\right.

(H.5) There exist constant C ≥ 0 and a constant 0α120\leq \alpha \leq \frac{1}{2} such that for every (ω, t) ∈ Ω × [0, T ] and (y, y) ∈ ℝ2, (z, z) ∈ ℝd × ℝd, {(i)|f(t,y1,y1',z1,z1')f(t,y2,y2',z2,z2')|2C{|y1y2|2+|y1'y2'|2+|z1z2|2+|z1'z2'|2},(ii)|g(t,y1,y1',z1,z1')g(t,y2,y2',z2,z2')|2C{|y1y2|2+|y1'y2'|2}+α{|z1z2|2+|z1'z2'|2}.\left\{{\matrix{{\left( i \right){{\left| {f(t,{y_1},y_1',{z_1},z_1') - f(t,{y_2},y_2',{z_2},z_2')} \right|}^2} \le C\left\{{{{\left| {{y_1} - {y_2}} \right|}^2} + {{\left| {y_1' - y_2'} \right|}^2} + {{\left| {{z_1} - {z_2}} \right|}^2} + {{\left| {z_1' - z_2'} \right|}^2}} \right\},} \hfill \cr {\left( {ii} \right){{\left| {g(t,{y_1},y_1',{z_1},z_1') - g(t,{y_2},y_2',{z_2},z_2')} \right|}^2} \le C\left\{{{{\left| {{y_1} - {y_2}} \right|}^2} + {{\left| {y_1' - y_2'} \right|}^2}} \right\} + \alpha \left\{{{{\left| {{z_1} - {z_2}} \right|}^2} + {{\left| {z_1' - z_2'} \right|}^2}} \right\}.} \hfill \cr}} \right.

(H.6) (i) For a.e (t, ω) the mapping (y, y, z, z) → f (t, y, y, z, z) is a cotinuous. (ii) There exist constant C ≥ 0 and a constant 0α120\leq \alpha \leq \frac{1}{2} such that for every (ω, t) ∈ Ω × [0, T] and (y, y) ∈ ℝ2, (z, z) ∈ ℝd × ℝd, {|f(t,y,y',z,ź)|C(1+|y|+|y'|+|z|+|ź|),gsatisfies(H.2)(ii).\left\{{\matrix{{\left| {f\left({t,y,{y'},z,z'} \right)} \right| \le C\left({1 + \left| y \right| + \left| {{y'}} \right| + \left| z \right| + \left| {z'} \right|} \right),} \hfill\cr{} \hfill\cr{g\,{\rm{satisfies}}\,\left({H.2} \right)\left({ii} \right).} \hfill\cr}} \right.

We recall the following existence results.

Proposition 1

[2] (2014). Under the assumptions (H.1)–(H.5) the reflected BDSDE (2) has a unique solution (Y, Z, K) ∈ 𝒮2 (0, T, ℝd) × ℳ2 (0, T, ℝd) × 𝒜2.

Existence result

In this section we are interested in weakening the conditions on f. We assume that f and g satisfy the following assumptions:

(H.7) Linear growth: There esists a nonnegative process ft ∈ 𝕄2 (0, T, ℝd) such that (t,y,y',z)[0,T]×2×d,|f(t,y,y',z)|ft(ω)+C(|y|+|y'|+|z|).\forall \left(t,y,y^{^{\prime}},z\right) \in \left[ 0,T\right] \times \mathbb{R}^{2}\times \mathbb{R}^{d},\text{}\left\vert f\left(t,y,y^{^{\prime}},z\right) \right\vert \leq f_{t}\left(\omega \right) +C\left(\left\vert y\right\vert +\left\vert y^{^{\prime}}\right\vert +\left\vert z\right\vert \right).

(H.8)f (t, ·, y, z): ℝ → ℝ is a left continuous and f (t, y, ·,·) is a cotinuous.

(H.9) There exists a continuous fonction π : [0, T ] × (ℝ)2 × ℝd satisfying for y1y2, (y1',y2')()2\left( y_{1}^{^{\prime}},y_{2}^{^{\prime}}\right) \in \left( \mathbb{R}\right)^{2} , (z1, z2) ∈ (ℝd)2{|π(t,y,y',z)|C(|y|+|y'|+|z|),f(t,ω,y1,y1',z1)f(t,ω,y2,y2',z2)π(t,y1y2,y1'y2',z1z2).\left\{\matrix{\left\vert \pi \left(t,y,y^{^{\prime}},z\right) \right\vert \leq C\left(\left\vert y\right\vert +\left\vert y^{^{\prime}}\right\vert +\left\vert z\right\vert \right), \hfill \\ f\left(t,\omega,y_{1},y_{1}^{^{\prime}},z_{1}\right) -f\left(t,\omega,y_{2},y_{2}^{^{\prime}},z_{2}\right) \geq \pi \left(t,y_{1}-y_{2},y_{1}^{^{\prime}}-y_{2}^{^{\prime}},z_{1}-z_{2}\right).}\right.

(H.10) Monotonicity in y: ∀ (y, y, z), f (t, y, y, z) is increasing in y.

(H.11)g satisfies (H.5)(ii) and g(t, 0, 0, 0) ≡ 0.

Hence, we only consider the following type of Mean-field reflected BDSDE: Yt=ξ+tTE'(f(s,ω,ω',Ys,(Y˜s)',Zs))ds+tTdKs+tTE'(g(s,ω,ω',Ys,(Y˜s)',Zs))dBstTZsdWs,0tT.\matrix{Y_{t}=\xi +\int_{t}^{T}E^{^{\prime}}\left(f(s,\omega,\omega^{^{\prime}},Y_{s},\left(\tilde{Y}_{s}\right)^{^{\prime}},Z_{s})\right)ds+\int_{t}^{T}dK_{s} \hfill \\ +\int_{t}^{T}E^{^{\prime}}\left(g(s,\omega,\omega^{^{\prime}},Y_{s},\left(\tilde{Y}_{s}\right)^{^{\prime}},Z_{s})\right) d\overleftarrow{B}_{s}-\int_{t}^{T}Z_{s}dW_{s},\ 0\leq t\leq T.}

Proposition 2

[2] (2014). Under the assumption (H.1)–(H.4) and (H.6), and for any random variable ξ ∈ 𝕃2the mean-field RBDSDE (3) a has an adapted solution (Y, Z, K) ∈ 𝒮2 (0, T, ℝd) × ℳ2 (0, T, ℝd) × 𝒜2, which is a minimal one, in the sense that, if (Y*, Z*, K*) is any other solution we Y ≤ Y*, P – a.s.

Now we prove a technical Lemma before we introduce the main theorem.

Lemma 3

Let π (t, y, y, z) satisfies (H.9), g satisfies (H.11) and h belongs in2 (0, T, ℝd). For a continuous function of finite variation K˜\tilde{K} belong in 𝒜2we consider the processes(Y˜,Z˜)𝒮2(0,T,)×2(0,T,d)\left(\tilde{Y},\tilde{Z}\right) \in \mathcal{S}^{2}\left(0,T,\mathbb{R}\right) \times \mathcal{M}^{2}\left(0,T,\mathbb{R}^{d}\right)such that:{(i)Y˜t=ξ+tTE'(π(s,ω,ω',Y˜s,(Y˜s)',Z˜s)+h(s))ds+tTdK˜s+tTE'(g(s,ω,ω',Y˜s,(Y˜s)',Z˜s))dBstTZ˜sdWs,0tT,(ii)0TY˜sdK˜s0.\left\{\matrix{\left(i\right) \text{}\tilde{Y}_{t}=\xi +\int_{t}^{T}E^{^{\prime}}\left(\pi \left(s,\omega,\omega^{^{\prime}},\tilde{Y}_{s},\left(\tilde{Y}_{s}\right)^{^{\prime}},\tilde{Z}_{s}\right) +h\left(s\right) \right)ds+\int_{t}^{T}d\tilde{K}_{s} \hfill\\ +\int_{t}^{T}E^{^{\prime}}\left(g\left(s,\omega,\omega^{^{\prime}},\tilde{Y}_{s},\left(\tilde{Y}_{s}\right)^{^{\prime}},\tilde{Z}_{s}\right)\right) d\overleftarrow{B}_{s}-\int_{t}^{T}\tilde{Z}_{s}dW_{s},\ 0\leq t\leq T, \hfill \\ \left(ii\right) \text{}\int_{0}^{T}\tilde{Y}_{s}^{-}d\tilde{K}_{s}\geq 0. \hfill}\right.Then we have

The MF-RBDSDE (4) has a least one solution(Y˜,Z˜,K˜)𝒮2(0,T,d)×2(0,T,d)×𝒜2\left(\tilde{Y},\tilde{Z},\tilde{K}\right) \in \mathcal{S}^{2}\left(0,T,\mathbb{R}^{d}\right) \times \mathcal{M}^{2}\left(0,T,\mathbb{R}^{d}\right) \times \mathcal{A}^{2}

if h(t) ≥ 0 and ξ ≥ 0, we haveY˜t0\tilde{Y}_{t}\geq 0 , dℙ × dt – a.s.

Proof

(i) See [2], (2014). (ii) Applying Tanaka's formula to |Y˜t|2\left\vert \tilde{Y}_{t}^{-}\right\vert^{2} , we have 𝔼|Y˜t|2+𝔼tT1{Y˜s<0}|Z˜s|2ds=𝔼|ξ|22𝔼tTY˜sE'(π(s,Y˜s,(Y˜s)',Z˜s)+h(s))ds2𝔼tTY˜sdK˜s+𝔼tT1{Y˜s<0}||E'(g(s,Y˜s,(Y˜s)',Z˜s))||2ds.\matrix{\mathbb{E}\left\vert \tilde{Y}_{t}^{-}\right\vert^{2}+\mathbb{E}\int_{t}^{T}1_{\left\{\tilde{Y}_{s}<0\right\}}\left\vert \tilde{Z}_{s}\right\vert^{2}ds &=&\mathbb{E}\left\vert \xi^{-}\right\vert^{2}-2\mathbb{E}\int_{t}^{T}\tilde{Y}_{s}^{-}E^{^{\prime}}\left(\pi (s,\tilde{Y}_{s},\left(\tilde{Y}_{s}\right)^{^{\prime}},\tilde{Z}_{s})+h\left(s\right) \right) ds \hfill \\ \hfill &&-2\mathbb{E}\int_{t}^{T}\tilde{Y}_{s}^{-}d\tilde{K}_{s}+\mathbb{E}\int_{t}^{T}1_{\left\{\tilde{Y}_{s}<0\right\}}\left\vert \left\vert E\left(^{^{\prime}}g(s,\tilde{Y}_{s},\left(\tilde{Y}_{s}\right)^{^{\prime}},\tilde{Z}_{s})\right) \right\vert \right\vert^{2}ds.}

Since 2𝔼tTY˜sdK˜s0-2\mathbb{E}\int_{t}^{T}\tilde{Y}_{s}^{-}d\tilde{K}_{s}\leq 0 , h(s) ≥ 0 and ξ ≥ 0, we get 𝔼|Y˜t|2+𝔼tT1{Y˜s<0}|Z˜s|2ds2𝔼tTY˜sE'(π(s,Y˜s,(Y˜s)',Z˜s))ds+𝔼tT1{Y˜s<0}||E'(g(s,Y˜s,(Y˜s)',Z˜s))||2ds\matrix{\mathbb{E}\left\vert \tilde{Y}_{t}^{-}\right\vert^{2}+\mathbb{E}\int_{t}^{T}1_{\left\{\tilde{Y}_{s}<0\right\}}\left\vert \tilde{Z}_{s}\right\vert^{2}ds & \leq -2\mathbb{E}\int_{t}^{T}\tilde{Y}_{s}^{-}E^{^{\prime}}\left(\pi (s,\tilde{Y}_{s},\left(\tilde{Y}_{s}\right)^{^{\prime}},\tilde{Z}_{s})\right) ds \hfill \\& \quad+\mathbb{E}\int_{t}^{T}1_{\left\{\tilde{Y}_{s}<0\right\}}\left\vert \left\vert E^{^{\prime}}\left(g(s,\tilde{Y}_{s},\left(\tilde{Y}_{s}\right)^{^{\prime}},\tilde{Z}_{s})\right) \right\vert \right\vert^{2}ds}

By (H.9), we get |π(s,Y˜s,(Y˜s)',Z˜s)|C(|Y˜s|+|(Y˜s)'|+|Z˜s|)\left\vert \pi \left(s,\tilde{Y}_{s},\left(\tilde{Y}_{s}\right)^{^{\prime}},\tilde{Z}_{s}\right)\right\vert \leq C\left(\left\vert \tilde{Y}_{s}\right\vert +\left\vert\left(\tilde{Y}_{s}\right)^{^{\prime}}\right\vert +\left\vert \tilde{Z}_{s}\right\vert \right) and by assumption (H.11) for g, we have 𝔼|Y˜t|2+𝔼tT1{Y˜s<0}|Z˜s|2ds(4C2+C2β+2C)𝔼tT|Y˜s|2ds+(α+β)𝔼tT1{Y˜s<0}|Z˜s|2ds.\matrix{&&\mathbb{E}\left\vert \tilde{Y}_{t}^{-}\right\vert^{2}+\mathbb{E}\int_{t}^{T}1_{\left\{\tilde{Y}_{s}<0\right\}}\left\vert \tilde{Z}_{s}\right\vert^{2}ds \hfill \\ &\leq &\left(4C^{2}+\frac{C^{2}}{\beta}+2C\right) \mathbb{E}\int_{t}^{T}\left\vert \tilde{Y}_{s}^{-}\right\vert^{2}ds+\left(\alpha+\beta \right) \mathbb{E}\int_{t}^{T}1_{\left\{\tilde{Y}_{s}<0\right\}}\left\vert \tilde{Z}_{s}\right\vert^{2}ds.}

Therefore, choosing 0 ≤ β ≤ 1 – α and using Gronwall inequality, we have Y˜t=0\tilde{Y}_{t}^{-}=0 , ℙ – a.s., ∀t ∈ [0, T], which implies that Y˜t0\tilde{Y}_{t}\geq 0 ℙ – a.s., ∀t ∈ [0, T].

Before we prove the main result, we construct a sequence of MF-RBDSDEs as follows: {Y¯t0=ξ+tTE'(C(|Y¯s0|+(Y¯s0)'+|Z¯s0|)fs)ds+tTE'(g(s,Y¯s0+(Y¯s0)'+Z¯s0))dBs+tTdK¯s0tTZ¯s0dWs,0tT,(ii)Y¯t0St,(iii)0T(Y¯s0Ss)dK¯s0=0.\left\{\matrix{\bar{Y}_{t}^{0}=\xi +\int_{t}^{T}E^{^{\prime}}\left(-C\left(\left\vert \bar{Y}_{s}^{0}\right\vert +\left(\bar{Y}_{s}^{0}\right)^{^{\prime}}+\left\vert \bar{Z}_{s}^{0}\right\vert \right) -f_{s}\right) ds \hfill \\ +\int_{t}^{T}E^{^{\prime}}\left(g\left(s,\bar{Y}_{s}^{0}+\left(\bar{Y}_{s}^{0}\right)^{^{\prime}}+\bar{Z}_{s}^{0}\right) \right) d\overleftarrow{B}_{s}+\int_{t}^{T}d\bar{K}_{s}^{0}-\int_{t}^{T}\bar{Z}_{s}^{0}dW_{s},\ 0\leq t\leq T, \\ \\ \left(ii\right) \text{}\bar{Y}_{t}^{0}\geq S_{t}, \hfill\\ \\ \left(iii\right) \text{}\int_{0}^{T}\left(\bar{Y}_{s}^{0}-S_{s}\right) d\bar{K}_{s}^{0}=0. \hfill}\right.{(i)Y¯tn=ξ+tTE'(f(s,Y¯sn1,(Y¯sn1)',Z¯sn1)+π(s,δY¯sn,δ(Y¯sn)',δZ¯tn))ds+tTE'(g(s,Y¯sn,(Y¯sn)',Z¯sn))dBs+tTdK¯sntTZ¯sndWs,0tT,(ii)Y¯tnSt,(iii)0T(Y¯snSs)dk˜sn=0.\left\{\matrix{\left(i\right) \text{}\bar{Y}_{t}^{n}=\xi +\int_{t}^{T}E^{^{\prime}}\left(f\left(s,\bar{Y}_{s}^{n-1},\left(\bar{Y}_{s}^{n-1}\right)^{^{\prime}},\bar{Z}_{s}^{n-1}\right) +\pi \left(s,\delta \bar{Y}_{s}^{n},\delta \left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\delta \bar{Z}_{t}^{n}\right) \right) ds \\ +\int_{t}^{T}E^{^{\prime}}\left(g\left(s,\bar{Y}_{s}^{n},\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\bar{Z}_{s}^{n}\right) \right) d\overleftarrow{B}_{s}+\int_{t}^{T}d\bar{K}_{s}^{n}-\int_{t}^{T}\bar{Z}_{s}^{n}dW_{s}, 0\leq t\leq T, \hfill \\ \\ \left(ii\right) \text{}\bar{Y}_{t}^{n}\geq S_{t}, \hfill \\ \\ \left(iii\right) \text{}\int_{0}^{T}\left(\bar{Y}_{s}^{n}-S_{s}\right) d\tilde{k}_{s}^{n}=0. \hfill}\right.{(i)Yt0=ξ+tTE'(C(|Ys0|+(Ys0)'+|Zs0|)+fs)ds+tTdKs0+tTE'(g(s,Ys0,(Ys0)'+Zs0))dBstTZs0dWs,0tT,(ii)Yt0St,(iii)0T(Ys0Ss)dKs0=0.\left\{\matrix{\left(i\right) \text{}Y_{t}^{0}=\xi +\int_{t}^{T}E^{^{\prime}}\left(C\left(\left\vert Y_{s}^{0}\right\vert +\left(Y_{s}^{0}\right)^{^{\prime}}+\left\vert Z_{s}^{0}\right\vert \right) +f_{s}\right)ds+\int_{t}^{T}dK_{s}^{0} \\ +\int_{t}^{T}E^{^{\prime}}\left(g\left(s,Y_{s}^{0},\left(Y_{s}^{0}\right)^{^{\prime}}+Z_{s}^{0}\right) \right) d\overleftarrow{B}_{s}-\int_{t}^{T}Z_{s}^{0}dW_{s},\ 0\leq t\leq T, \hfill \\ \\ \left(ii\right) \text{}Y_{t}^{0}\geq S_{t}, \hfill \\ \\ \left(iii\right) \text{}\int_{0}^{T}\left(Y_{s}^{0}-S_{s}\right)dK_{s}^{0}=0. \hfill}\right.

For these solutions above, we get some properties as follows:

Lemma 4

Under the assumptions (H.1) – (H.4) and (H.7) – (H.11), we have for any n ≥ 1 and t ∈ [0, T] Y¯t0Y¯tnY¯tn+1Yt0.\bar{Y}_{t}^{0}\leq \bar{Y}_{t}^{n}\leq \bar{Y}_{t}^{n+1}\leq Y_{t}^{0}.

Proof

We will prove Y¯t0Y¯tn\bar{Y}_{t}^{0}\leq \bar{Y}_{t}^{n} at first. By Eqs. (5), and (6), we have Y¯t1Y¯t0=tTE'(π(s,δY¯s1,δ(Y¯s1)',δZ¯s1)+Λs1)ds+tTE'(g(s,Y¯s1,(Y¯s1)',Z¯s1)g(s,Y¯s0+(Y¯s0)'+Z¯s0))dBs+tT(dK¯s1dK¯s0)tTδZ¯s1dWs,\matrix{\bar{Y}_{t}^{1}-\bar{Y}_{t}^{0} =&\int_{t}^{T}E^{^{\prime}}\left(\pi\left(s,\delta \bar{Y}_{s}^{1},\delta \left(\bar{Y}_{s}^{1}\right)^{^{\prime}},\delta \bar{Z}_{s}^{1}\right) +\Lambda_{s}^{1}\right) ds \hfill \\&+\int_{t}^{T}E^{^{\prime}}\left(g\left(s,\bar{Y}_{s}^{1},\left(\bar{Y}_{s}^{1}\right)^{^{\prime}},\bar{Z}_{s}^{1}\right) -g\left(s,\bar{Y}_{s}^{0}+\left(\bar{Y}_{s}^{0}\right)^{^{\prime}}+\bar{Z}_{s}^{0}\right)\right) d\overleftarrow{B}_{s} \hfill\\ \hfill &+\int_{t}^{T}\left(d\bar{K}_{s}^{1}-d\bar{K}_{s}^{0}\right)-\int_{t}^{T}\delta \bar{Z}_{s}^{1}dW_{s}, \hfill} where Λs1=f(s,Y¯s0,(Y¯s0)',Z¯s0)+C(|Y¯s0|+(Y¯s0)'+|Z¯s0|)+fs\Lambda_{s}^{1}=f\left(s,\bar{Y}_{s}^{0},\left(\bar{Y}_{s}^{0}\right)^{^{\prime}},\bar{Z}_{s}^{0}\right) +C\left(\left\vert \bar{Y}_{s}^{0}\right\vert +\left(\bar{Y}_{s}^{0}\right)^{^{\prime}}+\left\vert \bar{Z}_{s}^{0}\right\vert \right) +f_{s} . By hypothesis (H.7) we have Λs10\Lambda_{s}^{1}\geq 0 , because (Y¯t0,Z¯t0)\left(\bar{Y}_{t}^{0},\bar{Z}_{t}^{0}\right) is the solution of Eq. (5), we get Λs12(0,T,d)\Lambda_{s}^{1}\in \mathcal{M}^{2}\left(0,T,\mathbb{R}^{d}\right) . Therefore, from Lemma 3 we get Y¯t1Y¯t0\bar{Y}_{t}^{1}\geq \bar{Y}_{t}^{0} . Now we want to prove Y¯tnY¯tn+1\bar{Y}_{t}^{n}\leq \bar{Y}_{t}^{n+1} , for any n ≥ 0. We set {δρsn+1=ρsn+1ρsn,Δψn+1(s,δY¯sn+1,δ(Y¯sn+1)',δZ¯sn+1)=ψ(s,δY¯sn+1+Y¯sn,δ(Y¯sn+1)'+(Y¯sn)',δZ¯sn+1+Z¯sn)ψ(s,Y¯sn,(Y¯sn)',Z¯sn).\left\{\matrix{\delta \rho_{s}^{n+1}=\rho_{s}^{n+1}-\rho_{s}^{n}, \hfill \\ \Delta \psi^{n+1}\left(s,\delta \bar{Y}_{s}^{n+1},\delta \left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n+1}\right)\hfill \\ =\psi \left(s,\delta \bar{Y}_{s}^{n+1}+\bar{Y}_{s}^{n},\delta \left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}}+\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n+1}+\bar{Z}_{s}^{n}\right) -\psi \left(s,\bar{Y}_{s}^{n},\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\bar{Z}_{s}^{n}\right).}\right.

Using Eq. (6), we have δY¯tn+1=tTE'(π(s,δY¯sn+1,δ(Y¯sn+1)',δZ¯sn+1)+θsn+1)dstTδZ¯sn+1dWs+tTE'(Δgn+1(s,δY¯sn+1,δ(Y¯sn+1)',δZ¯sn+1))dBs+tTd(δK¯sn+1),\matrix{\delta \bar{Y}_{t}^{n+1} = \hfill &\int_{t}^{T}E^{^{\prime}}\left(\pi \left(s,\delta \bar{Y}_{s}^{n+1},\delta \left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n+1}\right) +\theta_{s}^{n+1}\right)ds-\int_{t}^{T}\delta \bar{Z}_{s}^{n+1}dW_{s} \\&+\int_{t}^{T}E^{^{\prime}}\left(\Delta g^{n+1}(s,\delta \bar{Y}_{s}^{n+1},\delta \left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n+1})\right) d\overleftarrow{B}_{s}+\int_{t}^{T}d\left(\delta \bar{K}_{s}^{n+1}\right),} where θsn+1=Δfn(s,δY¯sn,δ(Y¯sn)',δZ¯sn)π(s,δY¯sn,δ(Y¯sn)',δZ¯sn)\theta_{s}^{n+1}=\Delta f^{n}\left(s,\delta \bar{Y}_{s}^{n},\delta \left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n}\right)-\pi \left(s,\delta \bar{Y}_{s}^{n},\delta \left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n}\right) and θs0=Λs1\theta_{s}^{0}=\Lambda_{s}^{1} , ∀n ≥ 0. According to it definition, one cas show that θs0\theta_{s}^{0} and Δgn+1, ∀n ≥ 0 satisfy all assumption of Lemma 3. Moreover, since K¯tn\bar{K}_{t}^{n} is a continuous and increasing process, for all n ≥ 0, δK¯sn+1\delta \bar{K}_{s}^{n+1} is a contiuous process of finite variation and, using the same argument as one appear in [2], on can show that 0T(Y¯sn+1Y¯sn)d(δK¯sn+1)=0T(Y¯sn+1Y¯sn)dK¯sn+10T(Y¯sn+1Y¯sn)dK¯sn=0T(Y¯sn+1Y¯sn)dK¯sn+10,\matrix{\int_{0}^{T}\left(\bar{Y}_{s}^{n+1}-\bar{Y}_{s}^{n}\right)^{-}d\left(\delta \bar{K}_{s}^{n+1}\right) & = \hfill \int_{0}^{T}\left(\bar{Y}_{s}^{n+1}-\bar{Y}_{s}^{n}\right)^{-}d\bar{K}_{s}^{n+1}-\int_{0}^{T}\left(\bar{Y}_{s}^{n+1}-\bar{Y}_{s}^{n}\right)^{-}d\bar{K}_{s}^{n} \\ & =\int_{0}^{T}\left(\bar{Y}_{s}^{n+1}-\bar{Y}_{s}^{n}\right)^{-}d\bar{K}_{s}^{n+1}\geq 0,\hfill} by Lemma 3, we deduce that δY¯tn+10\delta \bar{Y}_{t}^{n+1}\geq 0 , i.e. Y¯tn+1Y¯tn\bar{Y}_{t}^{n+1}\geq \bar{Y}_{t}^{n}t ∈ [0, T], we have Y¯tn+1Y¯tnY¯t0.\bar{Y}_{t}^{n+1}\geq \bar{Y}_{t}^{n}\geq \bar{Y}_{t}^{0}.

Now we shall prove that Y¯tn+1Yt0\bar{Y}_{t}^{n+1}\leq Y_{t}^{0}n ≥ 0, by Eqs.(3) and (7)Yt0Y¯tn+1=tTE'(C(|Ys0Y¯s+1|+|(Ys0)'(Y¯sn+1)'|+|Zs0Z¯sn+1|)+Λsn+1)ds+tTE'(g(s,Ys0,(Ys0)'+Zs0)g(s,s,Y¯sn,(Y¯sn)',Z¯sn))dBs+tT(dKs0dK¯sn+1)+tT(Zs0Z¯sn+1)dWs,\matrix{Y_{t}^{0}-\bar{Y}_{t}^{n+1} =&\int_{t}^{T}E^{^{\prime}}\left(-C\left(\left\vert Y_{s}^{0}-\bar{Y}_{s}^{+1}\right\vert +\left\vert \left(Y_{s}^{0}\right)^{^{\prime}}-\left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}}\right\vert +\left\vert Z_{s}^{0}-\bar{Z}_{s}^{n+1}\right\vert \right)+\Lambda_{s}^{n+1}\right) ds\\&+\int_{t}^{T}E^{^{\prime}}\left(g(s,Y_{s}^{0},\left(Y_{s}^{0}\right)^{^{\prime}}+Z_{s}^{0})-g(s,s,\bar{Y}_{s}^{n},\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\bar{Z}_{s}^{n})\right) d\overleftarrow{B}_{s}\hfill \\&+\int_{t}^{T}\left(dK_{s}^{0}-d\bar{K}_{s}^{n+1}\right)+\int_{t}^{T}\left(Z_{s}^{0}-\bar{Z}_{s}^{n+1}\right) dW_{s},\hfill} where Λsn+1=C(|Ys0Y¯s+1|+|(Ys0)'(Y¯sn+1)'|+|Zs0Z¯sn+1|+|Ys0|+(Ys0)'+|Zs0|)+fsf(s,Y¯sn,(Y¯sn)',Z¯sn)+π(s,δY¯sn+1,δ(Y¯sn+1)',δZ¯sn+1).\matrix{\Lambda_{s}^{n+1} &=& C\left(\left\vert Y_{s}^{0}-\bar{Y}_{s}^{+1}\right\vert +\left\vert \left(Y_{s}^{0}\right)^{^{\prime}}-\left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}}\right\vert +\left\vert Z_{s}^{0}-\bar{Z}_{s}^{n+1}\right\vert +\left\vert Y_{s}^{0}\right\vert+\left(Y_{s}^{0}\right)^{^{\prime}}+\left\vert Z_{s}^{0}\right\vert \right) \\ &&+f_{s}-f(s,\bar{Y}_{s}^{n},\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\bar{Z}_{s}^{n})+\pi \left(s,\delta \bar{Y}_{s}^{n+1},\delta \left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n+1}\right).}

By Lemma 3, we deduce that Yt0Y¯tn+10Y_{t}^{0}-\bar{Y}_{t}^{n+1}\geq 0 , i.e. Yt0Y¯tn+1Y_{t}^{0}\geq \bar{Y}_{t}^{n+1} , for all t ∈ [0, T]. Thus we have for all n ≥ 0 Yt0Y¯tn+1Y¯tnY¯t0,d¯×dta.s.t[0,T].Y_{t}^{0}\geq \bar{Y}_{t}^{n+1}\geq \bar{Y}_{t}^{n}\geq \bar{Y}_{t}^{0},\text{}d\mathbb{\bar{P}}\times dt-a.s.\text{}\forall t\in \left[ 0,T\right].

The proof of Lemma 4 is complete.

Theorem 5

Let ξ ∈ 𝕃2 (T, ℝ) and t ∈ [0, T]. Under assumption (H.1) – (H.4) and (H.7) – (H.11), the reflected MF-BDSDEs (2) has a minimal solution(Yt,Zt,Kt)0tT𝒮2(0,T,)×2(0,T,d)×𝒜2.(Y_{t},Z_{t},K_{t})_{0\leq t\leq T}\in \mathcal{S}^{2}\left(0,T,\mathbb{R}\right) \times \mathcal{M}^{2}\left(0,T,\mathbb{R}^{d}\right) \times \mathcal{A}^{2}.

Proof

From Lemma 4, we know (Y¯tn)n0\left(\bar{Y}_{t}^{n}\right)_{n\geq 0} is increasing and bounded in ℳ2 (0, T, ℝd). Since |Y˜tn|max(Y˜t0,Yt0)|Y˜t0|+|Yt0|\left\vert \tilde{Y}_{t}^{n}\right\vert \leq \max\left(\tilde{Y}_{t}^{0},Y_{t}^{0}\right) \leq \left\vert \tilde{Y}_{t}^{0}\right\vert +\left\vert Y_{t}^{0}\right\vert for all t ∈ [0, T], we have supn𝔼(sup0tT|Y¯tn|2)𝔼(sup0tT|Y¯t0|2)+𝔼(sup0tT|Yt0|2)<,\matrix{{\sup}\limits_{n}\mathbb{E}\left({\sup}\limits_{0\leq t\leq T}\left\vert \bar{Y}_{t}^{n}\right\vert^{2}\right) \leq \mathbb{E}\left({\sup}\limits_{0\leq t\leq T}\left\vert \bar{Y}_{t}^{0}\right\vert^{2}\right) +\mathbb{E}\left({\sup}\limits_{0\leq t\leq T}\left\vert Y_{t}^{0}\right\vert^{2}\right) <\infty,} then according to the Lebesgue's dominated convergence theorem, we deduce that (Y¯tn)n0\left(\bar{Y}_{t}^{n}\right)_{n\geq 0} converges in 𝒮2 (0, T, ℝ). We denote by Y¯\bar{Y} the limit of (Y¯tn)n0\left(\bar{Y}_{t}^{n}\right)_{n\geq 0} .

On the other hand from Eq. (6), we deduce that Y¯0n+1=Y¯Tn+1+0TE'(f(s,Y¯sn,(Y¯sn)',Z¯sn)+π(s,δY¯sn+1,δ(Y¯sn+1)',δZ¯sn+1))ds+tTE'(g(s,Y¯sn+1,(Y¯sn+1)',Z¯sn+1))dBs+tTdK¯sn+1tTZ¯sn+1dWs.\matrix{\bar{Y}_{0}^{n+1} =&\bar{Y}_{T}^{n+1}+\int_{0}^{T}E^{^{\prime}}\left(f\left(s,\bar{Y}_{s}^{n},\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\bar{Z}_{s}^{n}\right) +\pi \left(s,\delta \bar{Y}_{s}^{n+1},\delta \left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n+1}\right) \right) ds \\\hfill&+\int_{t}^{T}E^{^{\prime}}\left(g\left(s,\bar{Y}_{s}^{n+1},\left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\bar{Z}_{s}^{n+1}\right) \right) d\overleftarrow{B}_{s}+\int_{t}^{T}d\bar{K}_{s}^{n+1}-\int_{t}^{T}\bar{Z}_{s}^{n+1}dW_{s}.\hfill}

Applying Itô's formula, we obtain 𝔼|Y¯0n+1|2+𝔼0T|Z¯sn+1|2ds𝔼|Y¯Tn+1|2+2𝔼0TY¯sn+1dK¯sn+1+𝔼0T||E'(g(s,Y¯sn+1,(Y¯sn+1)',Z¯sn+1))||2ds+2𝔼0TY¯sn+1E'(f(s,Y¯sn,(Y¯sn)',Z¯sn)+π(s,δY¯sn+1,δ(Y¯sn+1)',δZ¯sn+1))ds.\matrix{\mathbb{E}\left\vert \bar{Y}_{0}^{n+1}\right\vert^{2}+\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}ds &\leq &\mathbb{E}\left\vert \bar{Y}_{T}^{n+1}\right\vert^{2}+2\mathbb{E}\int_{0}^{T}\bar{Y}_{s}^{n+1}d\bar{K}_{s}^{n+1}+\mathbb{E}\int_{0}^{T}\left\vert \left\vert E^{^{\prime}}\left(g(s,\bar{Y}_{s}^{n+1},\left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\bar{Z}_{s}^{n+1})\right) \right\vert \right\vert^{2}ds \\&&+2\mathbb{E}\int_{0}^{T}\bar{Y}_{s}^{n+1}E^{^{\prime}}\left(f(s,\bar{Y}_{s}^{n},\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\bar{Z}_{s}^{n})+\pi\left(s,\delta \bar{Y}_{s}^{n+1},\delta \left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n+1}\right) \right) ds.}

From assumption (H.7) and Yöung's inequality, we get 2𝔼0TY¯tn+1E'[f(s,Y¯sn,(Y¯sn)',Z¯sn)]ds2𝔼0TY¯sn+1E'[fs(ω)+C(1+|Y¯sn|+|(Y¯sn)'|+|Z¯sn|)]ds,4C2𝔼0T|Y¯sn+1|2ds+(4C2+1)𝔼0T|Y¯sn+1|2ds+𝔼0T|Y¯sn|2ds+16C2𝔼0T|Y¯sn+1|2ds+116𝔼0T|Z¯sn|2ds+𝔼0T|fs(ω)|2ds,=(24C2+1)𝔼0T|Y¯sn+1|2ds+𝔼0T|Y¯sn|2ds+116𝔼0T|Z¯sn|2ds+𝔼0T|fs(ω)|2ds,\matrix{\quad2\mathbb{E}\int_{0}^{T}\bar{Y}_{t}^{n+1}E^{^{\prime}}\left[ f(s,\bar{Y}_{s}^{n},\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\bar{Z}_{s}^{n})\right]ds \notag \hfill\\\leq 2\mathbb{E}\int_{0}^{T}\bar{Y}_{s}^{n+1}E^{^{\prime}}\left[f_{s}\left(\omega \right) +C\left(1+\left\vert \bar{Y}_{s}^{n}\right\vert +\left\vert \left(\bar{Y}_{s}^{n}\right)^{^{\prime}}\right\vert+\left\vert \bar{Z}_{s}^{n}\right\vert \right) \right] ds, \notag \hfill\\\leq 4C^{2}\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n+1}\right\vert^{2}ds+\left(4C^{2}+1\right) \mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n+1}\right\vert^{2}ds+\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n}\right\vert^{2}ds \hfill\\\quad+16C^{2}\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n+1}\right\vert^{2}ds+\frac{1}{16}\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}\right\vert^{2}ds+\mathbb{E}\int_{0}^{T}\left\vert f_{s}\left(\omega \right) \right\vert^{2}ds, \notag \hfill\\=\left(24C^{2}+1\right) \mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n+1}\right\vert^{2}ds+\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n}\right\vert^{2}ds+\frac{1}{16}\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}\right\vert^{2}ds+\mathbb{E}\int_{0}^{T}\left\vert f_{s}\left(\omega \right) \right\vert^{2}ds, \notag \hfill} and from hypothesis(H.9) we get 2𝔼0TY¯sn+1E'(π(s,δY¯sn+1,δ(Y¯sn+1)',δZ¯sn+1))ds2𝔼0TY¯sn+1E'(C(|δY¯sn+1|+|(δY¯sn+1)'|+|δZ¯sn+1|))ds,4C𝔼0T|Y¯sn+1|2ds+4C2𝔼0T|Y¯sn+1|2ds+𝔼0T|Y¯sn|2ds+8C2𝔼0T|Y¯sn+1|2ds+18𝔼0T|Z¯sn+1|2ds+16C2𝔼0T|Y¯sn+1|2ds+116𝔼0T|Z¯sn|2ds,=(4C+28C2)𝔼0T|Y¯sn+1|2ds+𝔼0T|Y¯sn|2ds+18𝔼0T|Z¯sn+1|2ds+116𝔼0T|Z¯sn|2ds.\matrix{\quad2\mathbb{E}\int_{0}^{T}\bar{Y}_{s}^{n+1}E^{^{\prime}}\left(\pi \left(s,\delta \bar{Y}_{s}^{n+1},\delta \left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n+1}\right) \right) ds \notag \hfill\\\leq 2\mathbb{E}\int_{0}^{T}\bar{Y}_{s}^{n+1}E^{^{\prime}}\left(C\left(\left\vert \delta \bar{Y}_{s}^{n+1}\right\vert +\left\vert \left(\delta \bar{Y}_{s}^{n+1}\right)^{^{\prime}}\right\vert +\left\vert \delta \bar{Z}_{s}^{n+1}\right\vert \right) \right) ds, \notag \hfill\\\leq 4C\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n+1}\right\vert^{2}ds+4C^{2}\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n+1}\right\vert^{2}ds+\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n}\right\vert^{2}ds+8C^{2}\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n+1}\right\vert^{2}ds \hfill\\\quad+\frac{1}{8}\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}ds+16C^{2}\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n+1}\right\vert^{2}ds+\frac{1}{16}\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}\right\vert^{2}ds, \notag \hfill\\=\left(4C+28C^{2}\right) \mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n+1}\right\vert^{2}ds+\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n}\right\vert^{2}ds+\frac{1}{8}\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}ds+\frac{1}{16}\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}\right\vert^{2}ds. \notag \hfill}

Using the two inequalities (8) and (9), we obtain 2𝔼0TY¯sn+1E'(f(s,Y¯sn,(Y¯sn)',Z¯sn)+π(s,δY¯sn+1,δ(Y¯sn+1)',δZ¯sn+1))ds(52C2+4C+1)𝔼0T|Y¯sn+1|2ds+2𝔼0T|Y¯sn|2ds+18𝔼0T(|Z¯sn+1|2+|Z¯sn|2)ds+𝔼0T|fs(ω)|2ds.\matrix{\hfill\quad2\mathbb{E}\int_{0}^{T}\bar{Y}_{s}^{n+1}E^{^{\prime}}\left(f(s,\bar{Y}_{s}^{n},\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\bar{Z}_{s}^{n})+\pi\left(s,\delta \bar{Y}_{s}^{n+1},\delta \left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n+1}\right) \right) ds \hfill\\\leq \left(52C^{2}+4C+1\right) \mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n+1}\right\vert^{2}ds+2\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n}\right\vert^{2}ds \hfill\\+\frac{1}{8}\mathbb{E}\int_{0}^{T}\left(\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}+\left\vert \bar{Z}_{s}^{n}\right\vert^{2}\right)ds+\mathbb{E}\int_{0}^{T}\left\vert f_{s}\left(\omega \right) \right\vert^{2}ds.\hfill}

Then, we get 𝔼0T|Z¯sn+1|2ds𝔼|ξ|2+𝔼0T||E'(g(s,Y¯sn+1,(Y¯sn+1)',Z¯sn+1))||2ds+C+2𝔼0TY¯sn+1,dK¯sn+1+18𝔼0T(|Z¯sn+1|2+|Z¯sn|2)ds,\matrix{\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}ds \leq &\mathbb{E}\left\vert \xi \right\vert^{2}+\mathbb{E}\int_{0}^{T}\left\vert\left\vert E^{^{\prime}}\left(g(s,\bar{Y}_{s}^{n+1},\left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\bar{Z}_{s}^{n+1})\right) \right\vert\right\vert^{2}ds \hfill\\&+C+2\mathbb{E}\int_{0}^{T}\langle \bar{Y}_{s}^{n+1},d\bar{K}_{s}^{n+1}\rangle +\frac{1}{8}\mathbb{E}\int_{0}^{T}\left(\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}+\left\vert \bar{Z}_{s}^{n}\right\vert^{2}\right)ds, \hfill} where C=2𝔼0T|Y¯sn|ds+(52C+4C+1)0T|Y¯sn+1|2ds+𝔼0T|fs(ω)|2dsC=2\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n}\right\vert ds+\left(52C+4C+1\right) \int_{0}^{T}\left\vert \bar{Y}_{s}^{n+1}\right \vert^{2}ds+\mathbb{E}\int_{0}^{T}\left\vert f_{s}\left(\omega \right) \right\vert^{2}ds .

Applying hypothesis (H. 11), we have 𝔼0T||E'(g(s,Y¯sn+1,(Y¯sn+1)',Z¯sn+1))||2ds4C𝔼0T|Y¯sn+1|2ds+2α𝔼0T|Z¯sn+1|2ds+2𝔼0T||g(s,0,0,0)||2ds.\matrix{\quad\hfill\mathbb{E}\int_{0}^{T}\left\vert \left\vert E^{^{\prime}}\left(g(s,\bar{Y}_{s}^{n+1},\left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\bar{Z}_{s}^{n+1})\right) \right\vert \right\vert^{2}ds \hfill\\\leq 4C\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n+1}\right\vert^{2}ds+2\alpha \mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}ds+2\mathbb{E}\int_{0}^{T}\left\vert \left\vert g(s,0,0,0)\right\vert \right\vert^{2}ds. \hfill}

Using Yöung's inequality, we obtain 2𝔼0TY¯sn+1dK¯sn+12𝔼0TSsdK¯sn+11θ𝔼(sup0tT|St|2)+θ𝔼|K¯Tn+1|2.\matrix{2\mathbb{E}\int_{0}^{T}\bar{Y}_{s}^{n+1}d\bar{K}_{s}^{n+1}\leq 2\mathbb{E}\int_{0}^{T}S_{s}d\bar{K}_{s}^{n+1}\leq \frac{1}{\theta}\mathbb{E}\left({\sup}\limits_{0\leq t\leq T}\left\vert S_{t}\right\vert^{2}\right) +\theta \mathbb{E}\left\vert \bar{K}_{T}^{n+1}\right\vert^{2}.}

Therefore, there exists a constant Cθ depending on α, ξ, C and θ, we derive 𝔼0T|Z¯sn+1|2dsCθ+(18+2α)𝔼0T|Z¯sn+1|2ds+18𝔼0T|Z¯sn|2ds+θ𝔼|K¯Tn+1|2,\matrix{\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}ds\leqC^{\theta}+\left(\frac{1}{8}+2\alpha \right) \mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}ds+\frac{1}{8}\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}\right\vert^{2}ds+\theta \mathbb{E}\left\vert \bar{K}_{T}^{n+1}\right\vert^{2},} where Cθ=C+𝔼|ξ|2+4C0T|Y¯sn+1|2ds+1θ𝔼(sup0tT|St|2)+2𝔼0T||g(s,0,0,0)||2dsC^{\theta}=C+\mathbb{E}\left\vert \xi \right\vert^{2}+4C\int_{0}^{T}\left\vert \bar{Y}_{s}^{n+1}\right\vert^{2}ds+\frac{1}{\theta}\mathbb{E}\left({\sup}\limits_{0\leq t\leq T}\left\vert S_{t}\right\vert^{2}\right) +2\mathbb{E}\int_{0}^{T}\left\vert \left\vertg(s,0,0,0)\right\vert \right\vert^{2}ds .

Chossing α such that 0<18+2α<10<\frac{1}{8}+2\alpha <1 , we obtain 𝔼0T|Z¯sn+1|2dsCθ+18𝔼0T|Z¯sn|2ds+θ𝔼|K¯Tn+1|2.\matrix{\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}ds\leq C^{\theta}+\frac{1}{8}\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}\right\vert^{2}ds+\theta \mathbb{E}\left\vert \bar{K}_{T}^{n+1}\right\vert^{2}.}

Moreover, since K¯Tn+1=Y¯0n+1ξ0TE'(f(s,Y¯sn,(Y¯sn)',Z¯sn)+π(s,δY¯sn+1,δ(Y¯sn+1)',δZ¯sn+1))ds0TE'(g(s,Y¯sn+1,(Y¯sn+1)',Z¯sn+1))dBs+tTZ¯sn+1dWs,\matrix{\bar{K}_{T}^{n+1} =&\bar{Y}_{0}^{n+1}-\xi -\int_{0}^{T}E^{^{\prime}}\left(f\left(s,\bar{Y}_{s}^{n},\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\bar{Z}_{s}^{n}\right) +\pi \left(s,\delta \bar{Y}_{s}^{n+1},\delta \left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n+1}\right) \right) ds \hfill \\&-\int_{0}^{T}E^{^{\prime}}\left(g\left(s,\bar{Y}_{s}^{n+1},\left(\bar{Y}_{s}^{n+1}\right)^{^{\prime}},\bar{Z}_{s}^{n+1}\right) \right) d\overleftarrow{B}_{s}+\int_{t}^{T}\bar{Z}_{s}^{n+1}dW_{s}, \hfill} by the Hölder inequality and B-D-G inequality, 𝔼 (X)2 ≤ 𝔼 (X2) and the properties on f, g, π that there exists two constants C1 and C2 depending on α, ξ and C of n such that 𝔼|K¯Tn+1|2C1+C2(𝔼0T|Z¯sn+1|2+|Z¯sn|2ds).\mathbb{E}\left\vert \bar{K}_{T}^{n+1}\right\vert^{2}\leq C_{1}+C_{2}\left(\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}+\left\vert \bar{Z}_{s}^{n}\right\vert^{2}ds\right)

Return to inequality (10), we get 𝔼0T|Z¯sn+1|2dsCθ+θC1+(18+θC2)𝔼0T|Z¯sn|2ds+θC2𝔼0T|Z¯sn+1|2ds,\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}ds\leq C^{\theta}+\theta C_{1}+\left(\frac{1}{8}+\theta C_{2}\right) \mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}\right\vert^{2}ds+\theta C_{2}\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}ds, we chosing θ, such that θC2 ≤ 1, we have 𝔼0T|Z¯sn+1|2dsCθ+θC1+(18+θC2)𝔼0T|Z¯sn|2ds(Cθ+θC1)i=0i=n1(18+θC2)i+(18+θC2)n𝔼0T|Z¯s0|2ds.\matrix{\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}ds & \leq C^{\theta}+\theta C_{1}+\left(\frac{1}{8}+\theta C_{2}\right) \mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}\right\vert^{2}ds \hfill\\& \leq \left(C^{\theta}+\theta C_{1}\right) \sum_{i=0}^{i=n-1}\left(\frac{1}{8}+\theta C_{2}\right)^{i}+\left(\frac{1}{8}+\theta C_{2}\right)^{n}\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{0}\right\vert^{2}ds.\hfill}

Now chossing θ such that 18+θC2<1\frac{1}{8}+\theta C_{2}<1 and notting 𝔼0T|Z¯s0|2ds<\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{0}\right\vert^{2}ds<\infty . Obtain supn𝔼0T|Z¯sn+1|2ds<,\matrix{{\sup}\limits_{n\in \mathbb{N}}\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n+1}\right\vert^{2}ds<\infty,} consequently, we deduce 𝔼|K¯Tn+1|2<.\mathbb{E}\left\vert \bar{K}_{T}^{n+1}\right\vert^{2}<\infty. Now we shall prove that (Z¯n,K¯n)\left(\bar{Z}^{n},\bar{K}^{n}\right) is a Cauchy sequence in ℳ2 (0, T, ℝd) × 𝒜2.

Applying Itô's formula to |δY˜sn,m|2=|Y˜snY˜sm|2\left\vert \delta \tilde{Y}_{s}^{n,m}\right\vert^{2}=\left\vert \tilde{Y}_{s}^{n}-\tilde{Y}_{s}^{m}\right\vert^{2} , we have 𝔼|Y¯tnY¯tm|2+𝔼0T|Z¯snZ¯sm|2ds=2𝔼0T(Y¯snY¯sm)E'(ΓsnΓsm)ds+20TY¯sn+1(dK¯sndK¯sm)+0T||E'(g(s,Y¯sn,(Y¯sn)',Z¯sn)g(s,Y¯sm,(Y¯sm)',Z¯sm))||2ds.\matrix{\mathbb{E}\left\vert \bar{Y}_{t}^{n}-\bar{Y}_{t}^{m}\right\vert^{2}+\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}-\bar{Z}_{s}^{m}\right\vert^{2}ds &=2\mathbb{E}\int_{0}^{T}\left(\bar{Y}_{s}^{n}-\bar{Y}_{s}^{m}\right)E^{^{\prime}}\left(\Gamma_{s}^{n}-\Gamma_{s}^{m}\right) ds+2\int_{0}^{T}\bar{Y}_{s}^{n+1}\left(d\bar{K}_{s}^{n}-d\bar{K}_{s}^{m}\right)\hfill \\ &+\int_{0}^{T}\left\vert \left\vert E^{^{\prime}}\left(g\left(s,\bar{Y}_{s}^{n},\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\bar{Z}_{s}^{n}\right)-g\left(s,\bar{Y}_{s}^{m},\left(\bar{Y}_{s}^{m}\right)^{^{\prime}},\bar{Z}_{s}^{m}\right) \right) \right\vert \right\vert^{2}ds. \hfill} where Γsn=f(s,Y¯sn1,(Y¯sn1)',Z¯sn1)+π(s,δY¯sn,δ(Y¯sn)',δZ¯sn)\Gamma_{s}^{n}=f(s,\bar{Y}_{s}^{n-1},\left(\bar{Y}_{s}^{n-1}\right)^{^{\prime}},\bar{Z}_{s}^{n-1})+\pi \left(s,\delta \bar{Y}_{s}^{n},\delta\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n}\right) . Since 0TY¯sn+1(dK¯sndK¯sm)0\int_{0}^{T}\bar{Y}_{s}^{n+1}\left(d\bar{K}_{s}^{n}-d\bar{K}_{s}^{m}\right) \leq 0 , we obtain 𝔼0T|Z¯snZ¯sm|2ds2𝔼0T(Y¯snY¯sm)E'(ΓsnΓsm)ds+0T||E'(g(s,Y¯sn,(Y¯sn)',Z¯sn)g(s,Y¯sm,(Y¯sm)',Z¯sm))||2ds.\matrix{\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}-\bar{Z}_{s}^{m}\right\vert^{2}ds &\leq 2\mathbb{E}\int_{0}^{T}\left(\bar{Y}_{s}^{n}-\bar{Y}_{s}^{m}\right) E^{^{\prime}}\left(\Gamma_{s}^{n}-\Gamma_{s}^{m}\right)ds \hfill \\ &+\int_{0}^{T}\left\vert \left\vert E^{^{\prime}}\left(g\left(s,\bar{Y}_{s}^{n},\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\bar{Z}_{s}^{n}\right)-g\left(s,\bar{Y}_{s}^{m},\left(\bar{Y}_{s}^{m}\right)^{^{\prime}},\bar{Z}_{s}^{m}\right) \right) \right\vert \right\vert^{2}ds. \hfill}

By the Hölder inequality and hypothesis (H.11), we deduce that (1α)𝔼0T|Z¯snZ¯sm|2ds2𝔼(0T|Y¯snY¯sm|2ds)12𝔼(0T|E'(ΓsnΓsm)|2ds)12+2C𝔼0T|Y¯snY¯sm|2ds.\matrix{\left(1-\alpha \right) \mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}-\bar{Z}_{s}^{m}\right\vert^{2}ds &\leq 2\mathbb{E}\left(\int_{0}^{T}\left\vert \bar{Y}_{s}^{n}-\bar{Y}_{s}^{m}\right\vert^{2}ds\right)^{\frac{1}{2}}\mathbb{E}\left(\int_{0}^{T}\left\vert E^{^{\prime}}\left(\Gamma_{s}^{n}-\Gamma_{s}^{m}\right) \right\vert^{2}ds\right)^{\frac{1}{2}} \hfill \\&+2C\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n}-\bar{Y}_{s}^{m}\right\vert^{2}ds.\hfill}

The boundedness of the sequence (Y¯n,Z¯n,K¯n)\left(\bar{Y}^{n},\bar{Z}^{n},\bar{K}^{n}\right) , we deduce that the Λ=supn[𝔼0TE'|Γsn|2ds]<\Lambda ={\sup}_{n\in \mathbb{N}}\left[ \mathbb{E}\int_{0}^{T}E^{^{\prime}}\left\vert \Gamma_{s}^{n}\right\vert^{2}ds\right] <\infty , this yields that (1α)𝔼0T|Z¯snZ¯sm|2ds4Λ𝔼(0T|Y¯snY¯sm|2ds)12+2C𝔼0T|Y¯snY¯sm|2ds,\matrix{\left(1-\alpha \right) \mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}-\bar{Z}_{s}^{m}\right\vert^{2}ds\leq 4\Lambda \mathbb{E}\left(\int_{0}^{T}\left\vert \bar{Y}_{s}^{n}-\bar{Y}_{s}^{m}\right\vert^{2}ds\right)^{\frac{1}{2}}+2C\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n}-\bar{Y}_{s}^{m}\right\vert^{2}ds,} which yields that (Z¯n)n0\left(\bar{Z}^{n}\right)_{n\geq 0} is a Cauchy sequence in ℳ2 (0, T, ℝd). Then there exists Z ∈ ℳ2 (ℝd) such that 𝔼0T|Z¯snZs|2ds0asn.\mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}-Z_{s}\right\vert^{2}ds\rightarrow 0\text{}as\text{}n\rightarrow \infty.

On the other hand, by Burkhölder-Davis-Gundy inequality, we get {𝔼sup0tT|tTZ¯sndWstTZsdWs|2𝔼tT|Z¯snZs|2ds0,asn,𝔼sup0tT|tTE'(g(s,Y¯sn,(Y¯sn)',Z¯sn))E'(g(s,Ys,(Ys)',Zs))|22C𝔼0T|Y¯snYs|2ds+α𝔼0T|Z¯snZs|2ds0,asn.\left\{\matrix{\mathbb{E}{\sup}_{0\leq t\leq T}\left\vert \int_{t}^{T}\bar{Z}_{s}^{n}dW_{s}-\int_{t}^{T}Z_{s}dW_{s}\right\vert^{2}\leq \mathbb{E}\int_{t}^{T}\left\vert \bar{Z}_{s}^{n}-Z_{s}\right\vert^{2}ds\rightarrow 0,\text{}as\text{}n\rightarrow \infty, \\ \mathbb{E}{\sup}_{0\leq t\leq T}\left\vert \int_{t}^{T}E^{^{\prime}}\left(g(s,\bar{Y}_{s}^{n},\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\bar{Z}_{s}^{n})\right) -E^{^{\prime}}\left(g(s,Y_{s},\left(Y_{s}\right)^{^{\prime}},Z_{s})\right) \right\vert^{2}\hfill \\ \leq 2C\mathbb{E}\int_{0}^{T}\left\vert \bar{Y}_{s}^{n}-Y_{s}\right\vert^{2}ds+\alpha \mathbb{E}\int_{0}^{T}\left\vert \bar{Z}_{s}^{n}-Z_{s}\right\vert^{2}ds\rightarrow 0,\text{}as\text{}n\rightarrow \infty. \hfill}\right.

Therefore, from the properieties of f and πΓsn=f(s,Y¯sn1,(Y¯sn1)',Z¯sn1)+π(s,δY¯sn,δ(Y¯sn)',δZ¯sn)f(s,Ys,(Ys)',Zs),\matrix{\Gamma_{s}^{n}=f(s,\bar{Y}_{s}^{n-1},\left(\bar{Y}_{s}^{n-1}\right)^{^{\prime}},\bar{Z}_{s}^{n-1})+\pi \left(s,\delta \bar{Y}_{s}^{n},\delta\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\delta \bar{Z}_{s}^{n}\right)\rightarrow f(s,Y_{s},\left(Y_{s}\right)^{^{\prime}},Z_{s}),}

¯\mathbb{\bar{P}}a.s., for all t ∈ [0, T] as n → ∞. Then follows by Lebesgue's dominated convergence theorem that 𝔼0T|E'(Γsnf(s,Ys,(Ys)',Zs))|2ds0,n\mathbb{E}\int_{0}^{T}\left\vert E^{^{\prime}}\left(\Gamma_{s}^{n}-f(s,Y_{s},\left(Y_{s}\right)^{^{\prime}},Z_{s})\right)\right\vert^{2}ds\rightarrow 0,\text{}n\rightarrow \infty

Since (Y˜s,Z˜s,Γsn)\left(\tilde{Y}_{s},\tilde{Z}_{s},\Gamma_{s}^{n}\right) converges in 𝒮2 (0, T, ℝ) × ℳ2 (0, T, ℝd) × ℳ2 (0, T, ℝ2) and 𝔼(sup0tT|K¯tnK¯tm|2)𝔼|Y¯0nY¯0m|2+𝔼sup0tT|Y¯tnY¯tm|2+𝔼0T|E'(ΓsnΓsm)|2ds+𝔼sup0tT|0tE'(g(s,Y¯sn,(Y¯sn)',Z¯sn)g(s,Y¯sm,(Y¯sm)',Z¯sm))dBs|2+𝔼sup0tT|0t(Z¯snZ¯sm)dWs|2\matrix{\mathbb{E}\left({\sup}\limits_{0\leq t\leq T}\left\vert \bar{K}_{t}^{n}-\bar{K}_{t}^{m}\right\vert^{2}\right) \leq &\mathbb{E}\left\vert \bar{Y}_{0}^{n}-\bar{Y}_{0}^{m}\right\vert^{2}+\mathbb{E}{\sup}\limits_{0\leq t\leq T}\left\vert \bar{Y}_{t}^{n}-\bar{Y}_{t}^{m}\right\vert^{2}+\mathbb{E}\int_{0}^{T}\left\vert E^{^{\prime}}\left(\Gamma_{s}^{n}-\Gamma_{s}^{m}\right) \right\vert^{2}ds \hfill\\&+\mathbb{E}{\sup}\limits_{0\leq t\leq T}\left\vert \int_{0}^{t}E^{^{\prime}}\left(g(s,\bar{Y}_{s}^{n},\left(\bar{Y}_{s}^{n}\right)^{^{\prime}},\bar{Z}_{s}^{n})-g(s,\bar{Y}_{s}^{m},\left(\bar{Y}_{s}^{m}\right)^{^{\prime}},\bar{Z}_{s}^{m})\right) d\overleftarrow{B_{s}}\right\vert^{2}\hfill \\&+\mathbb{E}{\sup}\limits_{0\leq t\leq T}\left\vert \int_{0}^{t}\left(\bar{Z}_{s}^{n}-\bar{Z}_{s}^{m}\right) dW_{s}\right\vert^{2}\hfill} for any n ≥ 0, we deduce from Bukhölder-Davis-Gundy inequality that 𝔼(sup0tT|K¯tnK¯tm|2)0,\mathbb{E}\left({\sup}\limits_{0\leq t\leq T}\left\vert \bar{K}_{t}^{n}-\bar{K}_{t}^{m}\right\vert^{2}\right) \rightarrow 0, as n → ∞. Consequently, there exists a t–mesurable process K wich value in ℝ such that 𝔼(sup0tT|K¯tnKt|2)0,\mathbb{E}\left({\sup}\limits_{0\leq t\leq T}\left\vert \bar{K}_{t}^{n}-K_{t}\right\vert^{2}\right) \rightarrow 0, as n → ∞. Obviously, K0 = 0 and {Kt; 0 ≤ tT} is a increasing and continuous process. From Eq. (6), we have for all n ≥ 0, Y¯tnSt\bar{Y}_{t}^{n}\geq S_{t} , ∀t ∈ [0, T], then YtSt, ∀t ∈ [0, T]. On the other hand, from the result of Saisho [8] (in 1987, p. 465), we have 0T(Y¯snSs)dK¯sn0T(YsSs)dKs,\int_{0}^{T}\left(\bar{Y}_{s}^{n}-S_{s}\right) d\bar{K}_{s}^{n}\rightarrow\int_{0}^{T}\left(Y_{s}-S_{s}\right) dK_{s},

¯\mathbb{\bar{P}}a.s., as n → ∞. Using the identite 0T(Y¯snSs)dK¯sn=0\int_{0}^{T}\left(\bar{Y}_{s}^{n}-S_{s}\right) d\bar{K}_{s}^{n}=0 , for all n ≥ 0 we conclude that 0T(YsSs)dKs0\int_{0}^{T}\left(Y_{s}-S_{s}\right) dK_{s}\geq 0 . Letting n → +∞ in Eq. (3), we prove that (Y, Z, K) is solution to Eq. (3). Let (Y*, Z*, K*) be any solution of the MF-RBDSDE (3), we have Y¯nY*\bar{Y}_{\cdot}^{n}\leq Y_{\cdot}^{\ast} , for all n ≥ 0 and therefore, Y. ≤ Y* i.e., Y is the minimal solution.

eISSN:
2444-8656
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics