Cite

Introduction

Curves are one of the basic structures of differential geometry. It is safe to report that G. Monge initiated the many important results in Euclidean 3-space curve theory and G. Darboux pioneered the idea of a moving frame.

The curve theory has been one of the most studied subjects because of its many applications area from geometry to the various branch of science. Especially the characteristics of curvature and torsion play an important role in special curve types such as so-called helices. In Euclidean 3-space E3, a general helix or a constant slope curve is defined in such a way that the tangent makes a constant angle with a fixed direction. A classical result stated by M. A Lancret in 1802 and first demonstrated by B. de Saint Venant in 1845 [5,6,11,12]. For nature’s helical structures, helices arise in nano-springs, carbon nano-tubes, helices, DNA double and collagen triple helix, lipid bilayers, bacterial flagella in salmonella and escherichia coli, aerial hyphae in actinomycetes, bacterial shape in spirochetes, horns, tendrils, vines, screws, springs, helical staircases and shells of the sea [1,2,9]. In fractal geometry, helical structures are used.

In Minkowski 3-space, null Cartan curves are known as the curves whose and Cartan frame contains two null (lightlike) vector fields (see [7] for more information). Null curves of AW(k)-type are studied in the 3-dimensional Lorentzian space by M. Külahcı [8].

In [4] B. Bukcu and M. K. Karacan defined a slant helix according to Bishop frame of the timelike curve and they have given some necessary and sufficent conditions for the slant helix. Ahmad T. Ali and Rafael Lopez gave characterizations of slant helices in terms of the curvature and torsion and discussed the tangent and binormal indicatrices of slant curves in E13E_1^3 [3,10,13].

F. Gökçelik and I.Gök defined a new kind of slant helix called W-slant helix in 3-dimensional Minkowski space as a curve whose binormal lines make a constant angle with a fixed direction [14].

Preliminaries
Definition 1

The Minkowski 3-spaceE13E_1^3is the real vector space E3which is endowed with the standard indefinite flat metric 〈.,.〉 defined byu,v=u1v1+u2v2+u3v3,\left\langle {u,v} \right\rangle = - {u_1}{v_1} + {u_2}{v_2} + {u_3}{v_3},for any two vectors u = (u1, u2, u3) and v = (v1, v2, v3) inE13E_1^3 . Since 〈.,.〉 is an indefinite metric, an arbitrary vectoruE13\{0}u \in E_1^3\backslash \{ 0\}can have one of three properties:

it can be space-like, ifu, u1 > 0,

time-like, ifu, u1 < 0 or

light-like or isotropic or null vector, ifu, u1 = 0, but u ≠ 0.

In particular, the norm (length) of a non lightlike vectoruE13u \in E_1^3is given byu=|u,u|.\left\| u \right\| = \sqrt {\left| {\left\langle {u,u} \right\rangle } \right|} .

Given a regular curveα:IE13\alpha :I \to E_1^3can locally be spacelike, timelike or null (lightlike), if all of its velocity vectors α(t) satisfyα(t), α(t) 〉1 > 0, 〈 α(t), α(t) 〉1 < 0 orα(t), α(t) 〉1 =0, respectively, at any tɛI, whereα(t)=dαdt.{\alpha^{'}}(t) = {{d\alpha } \over {dt}}. .

Definition 2

A curveα:IE13\alpha :I \to E_1^3is called a null curve, if its tangent vector α = T is a null vector. A null curve α = α(s) is called a null Cartan curve, if it is parameterized by the pseudo-arc function s defined bys(t)=0tα(u)du.s(t) = \int_0^t \sqrt {\left\| {{\alpha ^{''}}(u)} \right\|} du.

There exists a unique Cartan frame {T,N,B} along a non-geodesic null Cartan curve satisfying the Cartan equations[TNB]=[0k0τ0k0τ0][TNB],\left[ {\matrix{ {{T^{'}}} \cr {{N^{'}}} \cr {{B^{'}}} \cr } } \right] = \left[ {\matrix{ 0 & k & 0 \cr { - \tau } & 0 & k \cr 0 & { - \tau } & 0 \cr } } \right]\left[ {\matrix{ T \cr N \cr B \cr } } \right],where the curvature k(s) = 1 and the torsion τ(s) is an arbitrary function in pseudo-arc parameter s. If τ(s) = 0, the null Cartan curve is called a null Cartan cubic. The Cartan’s frame vectors satisfy the relationsN,N=1,T,T=B,B=0,T,B=1,T,N=N,B=0\matrix{ {\left\langle {N,N} \right\rangle = 1,\left\langle {T,T} \right\rangle = \left\langle {B,B} \right\rangle = 0,}\,\,\,\,\,\,\, \cr {\left\langle {T,B} \right\rangle = - 1,\left\langle {T,N} \right\rangle = \left\langle {N,B} \right\rangle = 0}}andT×N=T,N×B=B,B×T=N.T \times N = - T,N \times B = - B,B \times T = N.

Cartan frame {T,N,B} is positively oriented, if det(T,N,B) = [T,N,B] = 1.

The Frenet frame is created for the non-degenerated curves of three times continuously differentiable. But, at some points on the curve, curvature may vanish. In this case, we need an alternative frame in E3. Bishop introduced a new frame called Bishop frame or parallel transport frame, which is well defined even if the curve has a vanishing second derivative [7].

The Bishop Frame

The Bishop frame or relatively parallel adapted frame {T,N1,N2} of a regular curve in Euclidean 3-space is introduced by R.L. Bishop. It contains the tangential vector field T and two normal vector fields N1 and N2, which can be obtained by rotating the Frenet vectors N and B in the normal plane T of the curve, in such a way that they become relatively parallel. This means that their derivatives N1N_1^{'} and N2N_2^{'} with respect to the arc-length parameter s of the curve are collinear with the tangential vector field T [7].

Remark 1

We can also define N1and N2to be relatively parallel, if the normal componentT1=span{N1,N2}T_1^ \bot = span\{ {N_1},{N_2}\}of their derivativesN1N_1^{'} and N2N_2^{'}is zero, which implies that the mentioned derivatives are collinear with T1.

The Bishop frame of a null Cartan curve in E13E_1^3

The Bishop frame {T1,N1,N2} of a non-geodesic null Cartan curve in E13E_1^3 is positively oriented pseudo-orthonormal frame consisting of the tangential vector field T1, relatively parallel spacelike normal vector field N1 and relatively parallel lightlike transversal vector field N2.

Theorem 1

Let α be a null Cartan curve inE13E_1^3parameterized by pseudo-arc s with the curvature k(s) = 1 and the torsion τ(s). Then the Bishop frame {T1,N1,N2} and the Cartan frame {T,N,B} of α are related by[T1N1N2]=[100k210k222k21][TNB],\left[ {\matrix{ {{T_1}} \cr {{N_1}} \cr {{N_2}} \cr } } \right] = \left[ {\matrix{ 1 & 0 & 0 \cr { - {k_2}} & 1 & 0 \cr {{{k_2^2} \over 2}} & { - {k_2}} & 1 \cr } } \right]\left[ {\matrix{ T \cr N \cr B \cr } } \right],and the Cartan equations of according to the Bishop frame read[T1N1N2]=[k2k1000k100k2][T1N1N2],\left[ {\matrix{ {T_1^{'}} \cr {N_1^{'}} \cr {N_2^{'}} \cr } } \right] = \left[ {\matrix{ {{k_2}} & {{k_1}} & 0 \cr 0 & 0 & {{k_1}} \cr 0 & 0 & { - {k_2}} \cr } } \right]\left[ {\matrix{ {{T_1}} \cr {{N_1}} \cr {{N_2}} \cr } } \right],where the first Bishop curvature k1(s) = 1 and the second Bishop curvature satisfies Riccati differential equationk2(s)=12k22(s)τ(s),k_2^{'}\left( s \right) = - {1 \over 2}k_2^2\left( s \right) - \tau \left( s \right),which satisfies the conditionsN1,N1=1,T1,T1=N2,N2=0,T1,N2=1,T1,N1=N1,N2=0[7].\matrix{ {\left\langle {{N_1},{N_1}} \right\rangle = 1,\left\langle {{T_1},{T_1}} \right\rangle = \left\langle {{N_2},{N_2}} \right\rangle = 0,}\hfill\cr\,\,{\left\langle {{T_1},{N_2}} \right\rangle = - 1,\left\langle {{T_1},{N_1}} \right\rangle = \left\langle {{N_1},{N_2}} \right\rangle = 0\;\left[ 7 \right].} \hfill}

Curves of AW(k)- type
Proposition 1

Let α be a Frenet curve of osculating order 3, by using the cartan equations of α according to the Bishop frame(2.7), then we haveα(s)=T1(s),α(s)=T1(s)=k2T1+k1N1,α′″(s)=(k2+k22)T1+(k1+k1k2)N1+k12N2,α″″(s)=(k2+3k2k2+k23)T1+(k1+2k1k2+k1k2+k1k22)N1+3k1k1N2.\matrix{ {{\alpha ^{'}}\left( s \right) = {T_1}\left( s \right),} \hfill \cr {{\alpha ^{''}}\left( s \right) = T_1^{'}\left( s \right) = {k_2}{T_1} + {k_1}{N_1},} \hfill \cr {{\alpha ^{'''}}\left( s \right) = \left( {k_2^{'} + k_2^2} \right){T_1} + \left( {k_1^{'} + {k_1}{k_2}} \right){N_1} + k_1^2{N_2},} \hfill \cr {{\alpha ^{''''}}\left( s \right) = \left( {k_2^{''} + 3{k_2}k_2^{'} + k_2^3} \right){T_1}} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\, + \left( {k_1^{''} + 2{k_1}k_2^{'} + k_1^{'}{k_2} + {k_1}k_2^2} \right){N_1} + 3{k_1}k_1^{'}{N_2}.} \hfill}

Notation 1

Let us writeM1(s)=k1N1,{M_1}\left( s \right) = {k_1}{N_1},M2(s)=(k1+k1k2)N1+k12N2,{M_2}\left( s \right) = \left( {k_1^{'} + {k_1}{k_2}} \right){N_1} + k_1^2{N_2},M3(s)=(k1+2k1k2+k1k2+k1k22)N1+3k1k1N2.{M_3}\left( s \right) = \left( {k_1^{''} + 2{k_1}k_2^{'} + k_1^{'}{k_2} + {k_1}k_2^2} \right){N_1} + 3{k_1}k_1^{'}{N_2}.

Corollary 1

α (s), α (s), α″′ (s) and α″″ (s) are linearly dependent if and only if M1 (s), M2 (s) and M3 (s) are linearly dependent.

Definition 3

Frenet curves of osculating order 3 are of

type weak AW (2) if they satisfyM3(s)=M3(s),M2(s)M2(s),{M_3}\left( s \right) = \left\langle {{M_3}\left( s \right),M_2^ \star \left( s \right)} \right\rangle M_2^ \star \left( s \right),

type weak AW (3) if they satisfyM3(s)=M3(s),M1(s)M1(s),{M_3}\left( s \right) = \left\langle {{M_3}\left( s \right),M_1^ \star \left( s \right)} \right\rangle M_1^ \star \left( s \right),whereM1(s)=M1(s)M1(s),M_1^ \star \left( s \right) = {{{M_1}\left( s \right)} \over {\left\| {{M_1}\left( s \right)} \right\|}},M2(s)=M2(s)M2(s),M1(s)M1(s)M2(s)M2(s),M1(s)M1(s),M_2^ \star \left( s \right) = {{{M_2}\left( s \right) - \left\langle {{M_2}\left( s \right),M_1^ \star \left( s \right)} \right\rangle M_1^ \star \left( s \right)} \over {\left\| {{M_2}\left( s \right) - \left\langle {{M_2}\left( s \right),M_1^ \star \left( s \right)} \right\rangle M_1^ \star \left( s \right)} \right\|}},

AW (1)-type, if they satisfyM3(s)=0,{M_3}\left( s \right) = 0,

AW (2)-type, if they satisfyM2(s)2M3(s)=M3(s),M2(s)M2(s),{\left\| {{M_2}\left( s \right)} \right\|^2}{M_3}\left( s \right) = \left\langle {{M_3}\left( s \right),{M_2}\left( s \right)} \right\rangle {M_2}\left( s \right),

AW (3)-type, if they satisfyM1(s)2M3(s)=M3(s),M1(s)M1(s).{\left\| {{M_1}\left( s \right)} \right\|^2}{M_3}\left( s \right) = \left\langle {{M_3}\left( s \right),{M_1}\left( s \right)} \right\rangle {M_1}\left( s \right).

Proposition 2

Let α be a Frenet curve of osculating order 3, then α is AW (1)-type if and only if i) k1is a constant function, and ii) k1+2k1k2+k1k2+k1k22=0.k_1^{''} + 2{k_1}k_2^{'} + k_1^{'}{k_2} + {k_1}k_2^2 = 0.

Proof

Since α is a curve of type AW (1), then α must satisfy (3.8)M3(s)=(k1+2k1k2+k1k2+k1k22)N1+3k1k1N2,0=(k1+2k1k2+k1k2+k1k22)N1+3k1k1N2.\matrix{ \hfill {{M_3}\left( s \right) = \left( {k_1^{''} + 2{k_1}k_2^{'} + k_1^{'}{k_2} + {k_1}k_2^2} \right){N_1} + 3{k_1}k_1^{'}{N_2},} \cr \hfill {0 = \left( {k_1^{''} + 2{k_1}k_2^{'} + k_1^{'}{k_2} + {k_1}k_2^2} \right){N_1} + 3{k_1}k_1^{'}{N_2}.}}

Since N1 and N2 are linearly independent, therefore 3k1k1=0,3{k_1}k_1^{'} = 0,k1 is a constant function, and k1+2k1k2+k1k2+k1k22=0.k_1^{''} + 2{k_1}k_2^{'} + k_1^{'}{k_2} + {k_1}k_2^2 = 0.

Hence the proposition is proved.

Proposition 3

Let α be a Frenet curve of osculating order 3. Then, if α are of AW (2)–type, we have3(k1)2+3k1k1k2=k1k1+2k12k2+k1k1k2+k12k22.3{\left( {k_1^{'}} \right)^2} + 3k_1^{'}{k_1}{k_2} = k_1^{''}{k_1} + 2k_1^2k_2^{'} + k_1^{'}{k_1}{k_2} + k_1^2k_2^2.

Proof

Suppose that α is a Frenet curve of osculating order 3. From (3.2) and (3.3) we can write M2(s)=β(s)N1+γ(s)N2,M3(s)=δ(s)N1+η(s)N2,\matrix{ {{M_2}\left( s \right) = \beta \left( s \right){N_1} + \gamma \left( s \right){N_2},} \cr {{M_3}\left( s \right) = \delta \left( s \right){N_1} + \eta \left( s \right){N_2},}} where β (s), γ (s), δ (s) and η (s) are differential functions. Since M2 (s) and M3 (s) are linearly dependent, then the determinant of the coefficients of N1 and N2 is equal to zero, hence one can write |β(s)γ(s)δ(s)η(s)|=0,\left| {\matrix{ {\beta \left( s \right)} & {\gamma \left( s \right)} \cr {\delta \left( s \right)} & {\eta \left( s \right)} \cr } } \right| = 0, where β(s)=k1+k1k2,γ(s)=k12,δ(s)=k1+2k1k2+k1k2+k1k22andη(s)=3k1k1.\matrix{ {\beta \left( s \right) = k_1^{'} + {k_1}{k_2},\;\;\gamma \left( s \right) = k_1^2,} \hfill \cr {\delta \left( s \right) = k_1^{''} + 2{k_1}k_2^{'} + k_1^{'}{k_2} + {k_1}k_2^2\,{\rm{and}}} \hfill \cr {\;\eta \left( s \right) = 3{k_1}k_1^{'}.} \hfill}

By considering (3.14) in (3.13) we get 3(k1)2+3k1k1k2=k1k1+2k12k2+k1k1k2+k12k22.3{\left( {k_1^{'}} \right)^2} + 3k_1^{'}{k_1}{k_2} = k_1^{''}{k_1} + 2k_1^2k_2^{'} + k_1^{'}{k_1}{k_2} + k_1^2k_2^2.

Hence the proposition is proved.

Proposition 4

Let α be a Frenet curve of osculating order 3, then α is of type AW (3) if and only if k1 (s) is a constant function

Proof

Suppose that α is a Frenet curve of order 3. From (3.1) and (3.3) we can write M1(s)=β(s)N1+γ(s)N2,M3(s)=δ(s)N1+η(s)N2,\matrix{ {{M_1}\left( s \right) = \beta \left( s \right){N_1} + \gamma \left( s \right){N_2},} \cr {{M_3}\left( s \right) = \delta \left( s \right){N_1} + \eta \left( s \right){N_2},}} where β (s), γ (s), δ (s) and η (s) are differential functions. Since M2 (s) and M3 (s) are linearly dependent, then the determinant of the coefficients of N1 and N2 is equal to zero, one can write |β(s)γ(s)δ(s)η(s)|=0,\left| {\matrix{ {\beta \left( s \right)} & {\gamma \left( s \right)} \cr {\delta \left( s \right)} & {\eta \left( s \right)} \cr } } \right| = 0, where β(s)=k1,γ(s)=0,δ(s)=k1+2k1k2+k1k2+k1k22andη(s)=3k1k1.\matrix{ {\beta \left( s \right) = {k_1},\;\;\gamma \left( s \right) = 0,} \hfill \cr {\delta \left( s \right) = k_1^{''} + 2{k_1}k_2^{'} + k_1^{'}{k_2} + {k_1}k_2^2\;{\rm{and}}} \hfill \cr {\;\eta \left( s \right) = 3{k_1}k_1^{'}.} \hfill}

By substituting (3.16) in (3.15) we get k12k1=0.k_1^2k_1^{'} = 0.

For k12k1k_1^2k_1^{'} to be zero, k1 (s) has to be a constant function. Hence the proposition is proved.

Proposition 5

Let α be a Frenet curve of osculating order 3, then α is of weak AW (2)–type if and only if

k1 (s) is a constant function,

k1+2k1k2+k1k2+k1k22=0andk2(s)=2s2c,k_1^{''} + 2{k_1}k_2^{'} + k_1^{'}{k_2} + {k_1}k_2^2 = 0\;and\;{k_2}(s) = {2 \over {s - 2c}},where s and c are arc-length parameter and constant respectively.

Proof

Since α is of weak AW (2)–type, it must satisfy (3.4), by using (3.4), (3.6), (3.7) and (3.1)M1(s)=M1(s)M1(s)=k1N1k12=N1,M_1^ \star \left( s \right) = {{{M_1}\left( s \right)} \over {\left\| {{M_1}\left( s \right)} \right\|}} = {{{k_1}{N_1}} \over {\sqrt {k_1^2} }} = {N_1},M2(s)=M2(s)M2(s),M1(s)M1(s)M2(s)M2(s),M1(s)M1(s),M2(s)=(k1+k1k2)N1+k12N2(k1+k1k2)N1(k1+k1k2)N1+k12N2(k1+k1k2)N1,M2(s)=N2.\matrix{ {M_2^ \star \left( s \right) = {{{M_2}\left( s \right) - \left\langle {{M_2}\left( s \right),M_1^ \star \left( s \right)} \right\rangle M_1^ \star \left( s \right)} \over {\left\| {{M_2}\left( s \right) - \left\langle {{M_2}\left( s \right),M_1^ \star \left( s \right)} \right\rangle M_1^ \star \left( s \right)} \right\|}},} \hfill \cr {M_2^ \star \left( s \right) = {{\left( {k_1^{'} + {k_1}{k_2}} \right){N_1} + k_1^2{N_2} - \left( {k_1^{'} + {k_1}{k_2}} \right){N_1}} \over {\left\| {\left( {k_1^{'} + {k_1}{k_2}} \right){N_1} + k_1^2{N_2} - \left( {k_1^{'} + {k_1}{k_2}} \right){N_1}} \right\|}},} \hfill \cr {M_2^ \star \left( s \right) = {N_2}.} \hfill}

Since α is of weak AW (2)–type, then it must satisfy M3(s)=M3(s),M2(s)M2(s),=(k1+2k1k2+k1k2+k1k22)N1+3k1k1N2,N2N2,=0.\matrix{ {{M_3}\left( s \right)} \hfill & { = \left\langle {{M_3}\left( s \right),M_2^ \star \left( s \right)} \right\rangle M_2^ \star \left( s \right),} \hfill \cr {} \hfill & { = \left\langle {\left( {k_1^{''} + 2{k_1}k_2^{'} + k_1^{'}{k_2} + {k_1}k_2^2} \right){N_1} + 3{k_1}k_1^{'}{N_2},{N_2}} \right\rangle {N_2},} \hfill \cr {} \hfill & { = 0.} \hfill}

Therefore (k1+2k1k2+k1k2+k1k22)N1+3k1k1N2=0,\left( {k_1^{''} + 2{k_1}k_2^{'} + k_1^{'}{k_2} + {k_1}k_2^2} \right){N_1} + 3{k_1}k_1^{'}{N_2} = 0, then k1+2k1k2+k1k2+k1k22=0and3k1k1=0.\matrix{ {k_1^{''} + 2{k_1}k_2^{'} + k_1^{'}{k_2} + {k_1}k_2^2} \hfill & { = 0\;{\rm{and}}} \hfill \cr{\kern 50pt}{\kern 50pt}{\kern 10pt}{3{k_1}k_1^{'}} \hfill & { = 0.} \hfill}

For the k12k1k_1^2k_1^{'} to be zero, k1 (s) has to be a constant function.

Then (3.20) turns to 2k1k2+k1k22=0,2{k_1}k_2^{'} + {k_1}k_2^2 = 0, by integrating the above equation 2k2+k22=0,k2k22=12,k2k22ds=12ds,\matrix{ {2k_2^{'} + k_2^2} \hfill & { = 0,} \hfill \cr{\kern 33pt} {{{k_2^{'}} \over {k_2^2}}} \hfill & { = - {1 \over 2},} \hfill \cr{\kern 9pt} {\int {{k_2^{'}} \over {k_2^2}}ds} \hfill & { = - \int {1 \over 2}ds,} \hfill} let k2(s)=u,{k_2}\left( s \right) = u,k2ds=du,k_2^{'}ds = du, therefore (3.22) turns to duu2=12ds,1u=12+c,\matrix{ {\int {{du} \over {{u^2}}} = - \int {1 \over 2}ds,} \cr { - {1 \over u} = - {1 \over 2} + c,}} by simplifying the above equation and using (3.23) we get k2(s)=2s2c.{k_2}(s) = {2 \over {s - 2c}}.

Hence the proposition is proved.

Proposition 6

Let α be a Frenet curve of osculating order 3, then α is of weak AW (3)–type if and only if k1 (s) is a constant function.

Proof

Since α is of weak AW (3)–type, by using (3.3) and (3.18)M3(s)=M3(s),M1(s)M1(s),=(k1+2k1k2+k1k2+k1k22)N1\matrix{ {{M_3}\left( s \right)} \hfill {\ = \left\langle {{M_3}\left( s \right),M_1^ \star \left( s \right)} \right\rangle M_1^ \star \left( s \right),} \hfill \cr {} \hfill {\kern 35pt} {\ = \left( {k_1^{''} + 2{k_1}k_2^{'} + k_1^{'}{k_2} + {k_1}k_2^2} \right){N_1}} \hfill}

Therefore (k1+2k1k2+k1k2+k1k22)N1+3k1k1N2=(k1+2k1k2+k1k2+k1k22)N1k1k1=0.\matrix{ {\left( {k_1^{''} + 2{k_1}k_2^{'} + k_1^{'}{k_2} + {k_1}k_2^2} \right){N_1} + 3{k_1}k_1^{'}{N_2}} \hfill \ { = \left( {k_1^{''} + 2{k_1}k_2^{'} + k_1^{'}{k_2} + {k_1}k_2^2} \right){N_1}} \hfill \cr{\kern 217pt} {{k_1}k_1^{'}} \hfill { = 0.} \hfill}

For the k12k1k_1^2k_1^{'} to be zero, k1 (s) has to be a constant function. Hence the proposition is proved.

The helices according to Bishop frame of null cartan curve in Minkowski 3-space
Definition 4

Helix can be defined as a curve whose tangent lines make a constant angle with a fixed direction. Helices are characterized by the fact that the ratiok1k2{{{k_1}} \over {{k_2}}}is constant along the curve.

Theorem 2

Let α be a null cartan curve inE13E_1^3 , then α is a general helix if and only ifk1k2{{k_1} \over {k_2}}is constant.

Proof

Let α be a general helix in E13E_1^3 and 〈T, U〉 is constant, then α is a general helix, from the definition we have T,U=ccisconstant,\left\langle {T,U} \right\rangle = c\;\;\;{\rm{c}}\,{\rm{is}}\,{\rm{constant}}, by differentiating the above equation T,U+T,U=0,T,U=0,k2cosθ+k1sinθ=0,k1k2=cotθ(constant),\matrix{ \hfill {\left\langle {{T^{'}},U} \right\rangle + \left\langle {T,{U^{'}}} \right\rangle = 0,} \cr \hfill {\left\langle {{T^{'}},U} \right\rangle = 0,} \cr \hfill {{k_2}\cos \,\,\theta + {k_1}\sin \,\,\theta = 0,} \cr \hfill {{{{k_1}} \over {{k_2}}} = - \cot \,\,\theta \;\;\;{\rm{(constant),}}}} as disered.

Theorem 3

Suppose that α is a null cartan curve inE13E_1^3 , then α is a general helix if and only ifdet(T1,T1,T1′″)=k12(k1k2k2k1).det(T_1^{'},T_1^{''},T_1^{'''}) = k_1^2\left( {{k_1}k_2^{''} - {k_2}k_1^{''}} \right).

Proof

(⇒) Let k1k2{{{k_1}} \over {{k_2}}} be constant. We have equalities as T1(s)=k2T1+k1N1,T1(s)=(k2+k22)T1+(k1+k1k2)N1+k12N2,T1′″(s)=(k2+3k2k2+k23)T1+(k1+2k1k2+k1k2+k1k22)N1+3k1k1N2.\matrix{ {T_1^{'}\left( s \right)} \hfill \ { = {k_2}{T_1} + {k_1}{N_1},} \hfill \cr {T_1^{''}\left( s \right)} \hfill \ { = \left( {k_2^{'} + k_2^2} \right){T_1} + \left( {k_1^{'} + {k_1}{k_2}} \right){N_1} + k_1^2{N_2},} \hfill \cr {T_1^{'''}\left( s \right)} \hfill \ { = \left( {k_2^{''} + 3{k_2}k_2^{'} + k_2^3} \right){T_1}} \hfill \cr {} \hfill {\kern 37pt} { + \left( {k_1^{''} + 2{k_1}k_2^{'} + k_1^{'}{k_2} + {k_1}k_2^2} \right){N_1} + 3{k_1}k_1^{'}{N_2}.} \hfill}

So we get det(T1,T1,T1′″)=|k2k10(k2+k22)(k1+k1k2)k12(k2+3k2k2+k23)(k1+2k1k2+k1k2+k1k22)3k1k1|,det(T1,T1,T1′″)=k12k23(k1k2)+3k1k1k22(k1k2)+k12(k1k2k2k1).\matrix{ {det \,(T_1^{'},T_1^{''},T_1^{'''}) = \left| {\matrix{ {{k_2}} & {{k_1}} & 0 \cr {\left( {k_2^{'} + k_2^2} \right)} & {\left( {k_1^{'} + {k_1}{k_2}} \right)} & {k_1^2} \cr {\left( {\matrix{ {k_2^{''} + 3{k_2}k_2^{'}} \cr { + k_2^3} \cr } } \right)} & {\left( {\matrix{ {k_1^{''} + 2{k_1}k_2^{'}} \cr { + k_1^{'}{k_2} + {k_1}k_2^2} \cr } } \right)} & {3{k_1}k_1^{'}} \cr } } \right|,\,\,\,\,\,\,\,\,\,\,} \cr {det (T_1^{'},T_1^{''},T_1^{'''}) = - k_1^2k_2^3{{\left( {{{{k_1}} \over {{k_2}}}} \right)}^{'}} + 3{k_1}k_1^{'}k_2^2{{\left( {{{{k_1}} \over {{k_2}}}} \right)}^{'}} + k_1^2\left( {{k_1}k_2^{''} - {k_2}k_1^{''}} \right).}}

Since α is a general helix, and k1k2{{{k_1}} \over {{k_2}}} is constant. Hence, we have det(T1,T1,T1′″)=k12(k1k2k2k1),butk20.det (T_1^{'},T_1^{''},T_1^{'''}) = k_1^2\left( {{k_1}k_2^{''} - {k_2}k_1^{''}} \right),\;{\rm{but}}\;{k_2} \ne 0.

(⇐) Suppose that det(T1,T1,T1′″)=k12(k1k2k2k1)det (T_1^{'},T_1^{''},T_1^{'''}) = k_1^2\left( {{k_1}k_2^{''} - {k_2}k_1^{''}} \right) , then it is clear that the k1k2{{{k_1}} \over {{k_2}}} is constant, since (k1k2){\left( {{{{k_1}} \over {{k_2}}}} \right)^{'}} is zero. Hence the theorem is proved.

Theorem 4

Let α be a null cartan curve inE13E_1^3 , then α is a general helix if and only ifdet(N1,N1,N1′″)=0.det(N_1^{'},N_1^{''},N_1^{'''}) = 0.

Proof

(⇒) Suppose that k1k2{{{k_1}} \over {{k_2}}} be constant. We have equalities as N1=k1N2,N1=(k1k1k2)N2,N1′″=(k12k1k2k1k2+k1k22)N2.\matrix{ {N_1^{'} = {k_1}{N_2},} \hfill \cr {N_1^{''} = \left( {k_1^{'} - {k_1}{k_2}} \right){N_2},} \hfill \cr {N_1^{'''} = \left( {k_1^{''} - 2k_1^{'}{k_2} - {k_1}k_2^{'} + {k_1}k_2^2} \right){N_2}.} \hfill}

So we get det(N1,N1,N1′″)=|00k100k1200(k12k1k2k1k2+k1k22)|,det(N1,N1,N1′″)=0.\matrix{ {det (N_1^{'},N_1^{''},N_1^{'''}) = \left| {\matrix{ 0 & 0 & {{k_1}} \cr 0 & 0 & { - k_1^2} \cr 0 & 0 & {\left( {k_1^{''} - 2k_1^{'}{k_2} - {k_1}k_2^{'} + {k_1}k_2^2} \right)} \cr } } \right|,} \hfill \cr {det (N_1^{'},N_1^{''},N_1^{'''}) = 0.} \hfill}

(⇐) Suppose that det(N1,N1,N1′″)=0det(N_1^{'},N_1^{''},N_1^{'''}) = 0 , then it is clear that the k1k2{{{k_1}} \over {{k_2}}} is constant, since (k1k2){\left( {{{{k_1}} \over {{k_2}}}} \right)^{'}} is zero. Hence the theorem is proved.

Theorem 5

Let α be a null cartan curve inE13E_1^3 , then α is a general helix if and only ifdet(N2,N2,N2′″)=0.det(N_2^{'},N_2^{''},N_2^{'''}) = 0.

From (2.7)α(s)=T,DTT=k2T1+k1N1,DTN1=k1N2,DTN2=k2N2.\matrix{\,\,\,\,{\alpha \left( s \right) = T,} \hfill \cr {\,\,\,{D_T}T = {k_2}{T_1} + {k_1}{N_1},} \hfill \cr {{D_T}{N_1} = {k_1}{N_2},} \hfill \cr {{D_T}{N_2} = - {k_2}{N_2}.} \hfill}

Theorem 6

Letα:IE13\alpha :I \to E_1^3be a unit speed null cartan curve with the cartan frame apparatus {T, N2, N2, k1, k2}, then α is a general helix if and only ifDT(DTDTN1)+k1k2DTN2=(k13k1k2)1k1DTN1.{D_T}\left( {{D_T}{D_T}{N_1}} \right) + {k_1}{k_2}{D_T}{N_2} = \left( {k_1^{''} - 3k_1^{'}{k_2}} \right){1 \over {{k_1}}}{D_T}{N_1}.

Proof

(⇒) Suppose that α is a general helix. Then, from (4.6), we have DTN1=k1N2,DT(DTN1)=k1N2k1k2N2,\matrix{ {{D_T}{N_1} = {k_1}{N_2},}{\kern 28pt}\cr {{D_T}\left( {{D_T}{N_1}} \right) = k_1^{'}{N_2} - {k_1}{k_2}{N_2},}}DT(DTDTN1)=k1N2(k1k2+k1k2)N2k1k2N2k1k2DTN2.{D_T}\left( {{D_T}{D_T}{N_1}} \right) = k_1^{''}{N_2} - \left( {k_1^{'}{k_2} + {k_1}k_2^{'}} \right){N_2} - k_1^{'}{k_2}{N_2} - {k_1}{k_2}{D_T}{N_2}.

Since α is a general helix k1k2=ccisconstant,{{{k_1}} \over {{k_2}}} = c\;\;\;c\,{\rm{is}}\,{\rm{constant}}, by differentiating (4.10) we get (k1k2)=2k1k2,{\left( {{k_1}{k_2}} \right)^{'}} = 2k_1^{'}{k_2}, but DTN1=k1N2,N2=1k1DTN1.\matrix{ {{D_T}{N_1} = {k_1}{N_2},} \cr {{N_2} = {1 \over {{k_1}}}{D_T}{N_1}.}}

By substituting (4.11) and (4.12) in (4.9) we get DT(DTDTN1)=(k13k1k2)(1k1DTN1)k1k2DTN2,DT(DTDTN1)+k1k2DTN2=(k13k1k2)(1k1DTN1).\matrix{ {\kern 78pt}{{D_T}\left( {{D_T}{D_T}{N_1}} \right)} \hfill { = \left( {k_1^{''} - 3k_1^{'}{k_2}} \right)\left( {{1 \over {{k_1}}}{D_T}{N_1}} \right) - {k_1}{k_2}{D_T}{N_2},} \hfill \cr {{D_T}\left( {{D_T}{D_T}{N_1}} \right) + {k_1}{k_2}{D_T}{N_2}} \hfill { = \left( {k_1^{''} - 3k_1^{'}{k_2}} \right)\left( {{1 \over {{k_1}}}{D_T}{N_1}} \right).} \hfill} (⇐) We will show that null cartan curve α is a general helix. By differentianting (4.12) covariently N2=1k1DTN1,DTN2=k1k12DTN1+1k1DTDTN1,\matrix{ {\kern 20pt}{{N_2}} \hfill \ { = {1 \over {{k_1}}}{D_T}{N_1},} \hfill \cr {{D_T}{N_2}} \hfill \ { = - {{k_1^{'}} \over {k_1^2}}{D_T}{N_1} + {1 \over {{k_1}}}{D_T}{D_T}{N_1},} \hfill}DTDTN2=(k1k12)DTN12k1k12DTDTN1+1k1DTDTDTN1.{D_T}{D_T}{N_2} = {\left( { - {{k_1^{'}} \over {k_1^2}}} \right)^{'}}{D_T}{N_1} - {{2k_1^{'}} \over {k_1^2}}{D_T}{D_T}{N_1} + {1 \over {{k_1}}}{D_T}{D_T}{D_T}{N_1}.

By substituting (4.8) and (4.13) in (4.15) we get DTDTN2=[(k1k12)+(k13k1k2)1k12]DTN12(k1)2k12N2(2k1k1+k2)DTN2.\matrix{ {{D_T}{D_T}{N_2}} \ { = \left[ {{{\left( { - {{k_1^{'}} \over {k_1^2}}} \right)}^{'}} + \left( {k_1^{''} - 3k_1^{'}{k_2}} \right){1 \over {k_1^2}}} \right]{D_T}{N_1}} \cr{\kern 20pt} { - {{2{{\left( {k_1^{'}} \right)}^2}} \over {k_1^2}}{N_2} - \left( {{{2k_1^{'}} \over {{k_1}}} + {k_2}} \right){D_T}{N_2}.}}

From (4.6)DTN2=k2N2,DT(DTN2)=k2N2k2DTN2.\matrix{{{D_T}{N_2} = - {k_2}{N_2},}{\kern 35pt} \cr {{D_T}\left( {{D_T}{N_2}} \right) = - k_2^{'}{N_2} - {k_2}{D_T}{N_2}.}} By comparing (4.16) and (4.17)(2k1k1+k2)=k2,- \left( {{{2k_1^{'}} \over {{k_1}}} + {k_2}} \right) = - {k_2}, by integrating the above equation we get k1=1,{k_1} = 1, to find k2, by comparing (4.16) and (4.17) we have 2(k1)2k12=k2.- {{2{{\left( {k_1^{'}} \right)}^2}} \over {k_1^2}} = - k_2^{'}.

But k1 = 1, therefore k2=0,k_2^{'} = 0, which means k2 is a constant function. k1k2is constant.{{{k_1}} \over {{k_2}}}\,{\rm{is\,constant}}. Hence α is a general helix.

Theorem 7

Letα:IE13\alpha :I \to E_1^3be a unit speed null cartan curve with the cartan frame apparatus {T, N2, N2, k1, k2}, then α is a general helix if and only ifDT(DTDTN2)=(k23k2k2+k23)(1k2DTN2).{D_T}\left( {{D_T}{D_T}{N_2}} \right) = \left( {k_2^{''} - 3{k_2}k_2^{'} + k_2^3} \right)\left( {{1 \over {{k_2}}}{D_T}{N_2}} \right).

The above theorem can be proven analogously, so we skip its proof.

eISSN:
2444-8656
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics