Open Access

Fractional Interaction of Financial Agents in a Stock Market Network


Cite

Haken H., Jumarie G. (2006) A macroscopic approach to complex system, Springer-Verlag, Berlin, Heidelberg, New York, 3th EditionHakenH.JumarieG.2006A macroscopic approach to complex systemSpringer-VerlagBerlin, Heidelberg, New York3th EditionSearch in Google Scholar

Milo R., Shen-Orr S. (2002) Itzkovitz S., Kashtan N., Chklovskii D., Alon U., Network motifs: simple building blocks of complex networks. Science, 298(5594): 824–827MiloR.Shen-OrrS.ItzkovitzS.KashtanN.ChklovskiiD.AlonU.2002Network motifs: simple building blocks of complex networksScience298559482482710.1515/9781400841356.217Search in Google Scholar

Castellano C., Pastor-Storras R. (2010) Thresholds for epidemic spreading in networks, Phys. Rev. Kett., 105(21): 218701CastellanoC.Pastor-StorrasR.2010Thresholds for epidemic spreading in networksPhys. Rev. Kett.1052121870110.1103/PhysRevLett.105.21870121231361Search in Google Scholar

Read J. M., Eames K. T., Edmunds W. J. (2008) Dynamic social networks and the implications for the spread of infectious disease, J. R. Soc. Interface, 6–6(26): 1001–1007ReadJ. M.EamesK. T.EdmundsW. J.2008Dynamic social networks and the implications for the spread of infectious diseaseJ. R. Soc. Interface6–6261001100710.1098/rsif.2008.0013260743318319209Search in Google Scholar

Keeling M. J. (2008) Rohani P, Modelling Infectious Diaseases in Human and Animals, Princeton University PressKeelingM. J.RohaniP2008Modelling Infectious Diaseases in Human and AnimalsPrinceton University Press10.1515/9781400841035Search in Google Scholar

Busenberg S., Martelli M. (Eds.) (1990) Differential Equations Models in Biology, Epidemiology and Ecology, Proceedings of a Conference Held in Claremont California, January 13–16 (Vol. 92). Springer Science and Business Media, 2002BusenbergS.MartelliM.(Eds.)1990Differential Equations Models in Biology, Epidemiology and EcologyProceedings of a Conference Held in Claremont CaliforniaJanuary 13–1692Springer Science and Business Media, 200210.1007/978-3-642-45692-3Search in Google Scholar

Jerri A. J. (1999) Introduction to integral equations with applicationsJerriA. J.1999Introduction to integral equations with applicationsSearch in Google Scholar

Rosenthal J., Gilliam D. S. (Eds.) (2012) Mathematical systems theory in biology, communications, computation and finance (Vol. 134). Springer Science and Business MediaRosenthalJ.GilliamD. S.(Eds.)2012Mathematical systems theory in biology, communications, computation and finance134Springer Science and Business MediaSearch in Google Scholar

Capasso V., Bakstein D. (2015) An introduction to continuous-time stochastic processes: theory, models, and applications to finance, biology, and medicine. BirkhäuserCapassoV.BaksteinD.2015An introduction to continuous-time stochastic processes: theory, models, and applications to finance, biology, and medicineBirkhäuser10.1007/978-1-4939-2757-9Search in Google Scholar

Hens T., Schenk-Hoppé K. R. (Eds.) (2009) Handbook of financial markets: dynamics and evolution. ElsevierHensT.Schenk-HoppéK. R.(Eds.)2009Handbook of financial markets: dynamics and evolutionElsevierSearch in Google Scholar

Deffuant G., Neau D., Amblard F. (2000) Weisbuch G, Mixing beliefs among interacting agents. Advances in Complex Systems, 3(01n04): 87–98DeffuantG.NeauD.AmblardF.WeisbuchG2000Mixing beliefs among interacting agentsAdvances in Complex Systems3(01n04):879810.1142/S0219525900000078Search in Google Scholar

Samanidou E., Zschischang E., Stauffer D., Lux T. (2007) Agent-based models of financial markets. Reports on Progress in Physics, 70(3): 409.SamanidouE.ZschischangE.StaufferD.LuxT.2007Agent-based models of financial marketsReports on Progress in Physics70340910.1088/0034-4885/70/3/R03Search in Google Scholar

Balcı M. A. (2016) Fractional virus epidemic model on financial networks. Open Mathematics, 4(1): 1074–1086BalcıM. A.2016Fractional virus epidemic model on financial networksOpen Mathematics411074108610.1515/math-2016-0098Search in Google Scholar

Onnela J. P., Kaski K., Kertész J. (2004) Clustering and information in correlation based financial networks. The European Physical Journal B, 38(2): 353–362OnnelaJ. P.KaskiK.KertészJ.2004Clustering and information in correlation based financial networksThe European Physical Journal B38235336210.1140/epjb/e2004-00128-7Search in Google Scholar

Kumar S., Deo N. (2012) Correlation and network analysis of global financial indices. Physical Review E, 86(2): 026101KumarS.DeoN.2012Correlation and network analysis of global financial indicesPhysical Review E86202610110.1103/PhysRevE.86.02610123005819Search in Google Scholar

Mizuno T., Takayasu H., Takayasu M. (2006) Correlation networks among currencies. Physica A: Statistical Mechanics and its Applications, 364:336–342MizunoT.TakayasuH.TakayasuM.2006Correlation networks among currenciesPhysica A: Statistical Mechanics and its Applications36433634210.1016/j.physa.2005.08.079Search in Google Scholar

Balcı M. A., Akgüller, Ö. (2016) Soft Vibrational Force on Stock Market Networks. Library Journal, 3, e3050.BalcıM. A.AkgüllerÖ.2016Soft Vibrational Force on Stock Market NetworksLibrary Journal3e3050Search in Google Scholar

Akgüller Ö., Balcı, M.A. (2018) Geodetic convex boundary curvatures of the communities in stock market networks. Physica A: Statistical Mechanics and its Applications, 505, pp.569–581.AkgüllerÖ.BalcıM.A.2018Geodetic convex boundary curvatures of the communities in stock market networksPhysica A: Statistical Mechanics and its Applications50556958110.1016/j.physa.2018.03.087Search in Google Scholar

Akgüller, Ö (2017) Geometric Soft Sets. Hittite Journal of Science & Engineering, 4(2).AkgüllerÖ2017Geometric Soft SetsHittite Journal of Science & Engineering4210.17350/HJSE19030000063Search in Google Scholar

Podlubny I. (1999) Fractional Differential Equation, Academic Press, New YorkPodlubnyI.1999Fractional Differential EquationAcademic PressNew YorkSearch in Google Scholar

Gorenflo R., Mainardi F. (1997) Fractional calculus: integral and differential equations of fractional order, Springer, New YorkGorenfloR.MainardiF.1997Fractional calculus: integral and differential equations of fractional orderSpringerNew York10.1007/978-3-7091-2664-6_5Search in Google Scholar

Wang C. C. (1965) The principle of fading memory. Archive for Rational Mechanics and Analysis, 18(5): 343–366WangC. C.1965The principle of fading memoryArchive for Rational Mechanics and Analysis18534336610.1007/BF00281325Search in Google Scholar

Tarasova V. V., Tarasov V. E. (2018) Concept of dynamic memory in economics. Communications in Nonlinear Science and Numerical Simulations, 55:127–145TarasovaV. V.TarasovV. E.2018Concept of dynamic memory in economicsCommunications in Nonlinear Science and Numerical Simulations5512714510.1016/j.cnsns.2017.06.032Search in Google Scholar

David S. A., Fischer C., Machado J. T. (2018) Fractional electronic circuit simulation of a nonlinear macroeconomic model. AEU-International Journal of Electronics and Communications, 84: 210–220.DavidS. A.FischerC.MachadoJ. T.2018Fractional electronic circuit simulation of a nonlinear macroeconomic modelAEU-International Journal of Electronics and Communications8421022010.1016/j.aeue.2017.11.019Search in Google Scholar

Babenkov M. B., Vitokhin E. Y. (2017) Thermoelastic Waves in a Medium with Heat-Flux Relaxation. Encyclopedia of Continuum Mechanics, 1–10BabenkovM. B.VitokhinE. Y.2017Thermoelastic Waves in a Medium with Heat-Flux RelaxationEncyclopedia of Continuum Mechanics11010.1007/978-3-662-53605-6_62-1Search in Google Scholar

Bas E., Acay B., Ozarslan R. (2019). The price adjustment equation with different types of conformable derivatives in market equilibrium. AIMS Mathematics, 4(3): 805–820.BasE.AcayB.OzarslanR.2019The price adjustment equation with different types of conformable derivatives in market equilibriumAIMS Mathematics4380582010.3934/math.2019.3.805Search in Google Scholar

Ozarslan R., Ercan A., Bas E. (2019). Novel Fractional Models Compatible with Real World Problems. Fractal and Fractional, 3(2), 15.OzarslanR.ErcanA.BasE.2019Novel Fractional Models Compatible with Real World ProblemsFractal and Fractional321510.3390/fractalfract3020015Search in Google Scholar

Bas E., Acay B., Ozarslan R. (2019). Fractional models with singular and non-singular kernels for energy efficient buildings. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(2), 023110.BasE.AcayB.OzarslanR.2019Fractional models with singular and non-singular kernels for energy efficient buildingsChaos: An Interdisciplinary Journal of Nonlinear Science29202311010.1063/1.508239030823708Search in Google Scholar

Bas E., Ozarslan R., Baleanu D., Ercan A. (2018). Comparative simulations for solutions of fractional Sturm–Liouville problems with non-singular operators. Advances in Difference Equations, 2018(1), 350.BasE.OzarslanR.BaleanuD.ErcanA.2018Comparative simulations for solutions of fractional Sturm–Liouville problems with non-singular operatorsAdvances in Difference Equations2018135010.1186/s13662-018-1803-8Search in Google Scholar

Bas E., Ozarslan R. (2018). Real world applications of fractional models by Atangana aleanu fractional derivative. Chaos, Solitons & Fractals, 116, 121–125.BasE.OzarslanR.2018Real world applications of fractional models by Atangana aleanu fractional derivativeChaos, Solitons & Fractals11612112510.1016/j.chaos.2018.09.019Search in Google Scholar

Shakeri F., Dehghan M. (2008) Solution of a model describing biological species living together using the variational iteration method. Mathematical and Computer Modelling, 48(5): 685–699ShakeriF.DehghanM.2008Solution of a model describing biological species living together using the variational iteration methodMathematical and Computer Modelling48568569910.1016/j.mcm.2007.11.012Search in Google Scholar

Babolian E., Biazar J. (2002) Solving the problem of biological species living together by Adomian decomposition method. Applied Mathematics and Computation, 129(2): 339–343BabolianE.BiazarJ.2002Solving the problem of biological species living together by Adomian decomposition methodApplied Mathematics and Computation129233934310.1016/S0096-3003(01)00043-1Search in Google Scholar

Yousefi S. A. (2011) Numerical solution of a model describing biological species living together by using Legendre multiwavelet method. International Journal of Nonlinear Science, 11(1): 109–113YousefiS. A.2011Numerical solution of a model describing biological species living together by using Legendre multiwavelet methodInternational Journal of Nonlinear Science111109113Search in Google Scholar

Momani S., Qaralleh R. (2006) An Efficient Method for Solving Sysyems of Fractional Integro-Differential Equations, Computers and Mathematics with Applications, 52: 459–470MomaniS.QarallehR.2006An Efficient Method for Solving Sysyems of Fractional Integro-Differential EquationsComputers and Mathematics with Applications5245947010.1016/j.camwa.2006.02.011Search in Google Scholar

Luchko A., Groneflo R. (1998) The initial value problem for some fractional differential equations with the Capoto derivative, Preprint Series A08-98, FAchbreich Mathematik und Informatik, Freie Universitat BerlinLuchkoA.GronefloR.1998The initial value problem for some fractional differential equations with the Capoto derivativePreprint Series A08-98,FAchbreich Mathematik und Informatik, Freie Universitat BerlinSearch in Google Scholar

Miller K. S., Ross B. (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New YorkMillerK. S.RossB.1993An Introduction to the Fractional Calculus and Fractional Differential EquationsJohn Wiley and SonsNew YorkSearch in Google Scholar

Oldhami K. B., Spanier J. (1974) The Fractional Calculus, Academic Press, New YorkOldhamiK. B.SpanierJ.1974The Fractional CalculusAcademic PressNew YorkSearch in Google Scholar

Ren R. F., Li H. B., Jiang W., Song M. Y. (2013) An efficient Chebyshev-tau method for solving the space fractional diffusion equations. Applied Mathematics and Computation, 224: 259–267RenR. F.LiH. B.JiangW.SongM. Y.2013An efficient Chebyshev-tau method for solving the space fractional diffusion equationsApplied Mathematics and Computation22425926710.1016/j.amc.2013.08.073Search in Google Scholar

Van Dam E. R., Haemers W. H. (2003) Which graphs are determined by their spectrum?, Linear Algebra Appl., 373: 241–272Van DamE. R.HaemersW. H.2003Which graphs are determined by their spectrum?Linear Algebra Appl.37324127210.1016/S0024-3795(03)00483-XSearch in Google Scholar

Cyman J., Lemańska M., Raczek J. (2006) On the doubly connected domination number of a graph, Open Mathematics, 4(1): 34–45CymanJ.LemańskaM.RaczekJ.2006On the doubly connected domination number of a graphOpen Mathematics41344510.1007/s11533-005-0003-4Search in Google Scholar

Graham R. L., Hell P. (1985) On the history of the minimum spanning tree problem, Annals of the History of Computing, 7(1): 43–57GrahamR. L.HellP.1985On the history of the minimum spanning tree problemAnnals of the History of Computing71435710.1109/MAHC.1985.10011Search in Google Scholar

Mantegna R. N. (1999) Hierarchical structure in financial markets. The European Physical Journal B-Condensed Matter and Complex Systems, 11(1):193–197MantegnaR. N.1999Hierarchical structure in financial marketsThe European Physical Journal B-Condensed Matter and Complex Systems11119319710.1007/s100510050929Search in Google Scholar

Naylor M. J., Rose L. C., Moyle B. J. (2007) Topology of foreign exchange markets using hierarchical structure methods. Physica A: Statistical Mechanics and its Applications, 382(1): 199–208NaylorM. J.RoseL. C.MoyleB. J.2007Topology of foreign exchange markets using hierarchical structure methodsPhysica A: Statistical Mechanics and its Applications382119920810.1016/j.physa.2007.02.019Search in Google Scholar

Balcı, M. A. (2018). Hierarchies in communities of Borsa Istanbul Stock Exchange. Hacettepe Journal of Mathematics and Statistics, 47(4), 921–936.BalcıM. A.2018Hierarchies in communities of Borsa Istanbul Stock ExchangeHacettepe Journal of Mathematics and Statistics474921936Search in Google Scholar

Tumminello M., Aste T., Di Matteo T., Mantegna R. N. (2005) A tool for filtering information in complex systems. Proceedings of the National Academy of Sciences of the United States of America, 102(30): 10421–10426TumminelloM.AsteT.Di MatteoT.MantegnaR. N.2005A tool for filtering information in complex systemsProceedings of the National Academy of Sciences of the United States of America10230104211042610.1073/pnas.0500298102118075416027373Search in Google Scholar

Barfuss W., Massara G. P., Di Matteo T., Aste T. (2016) Parsimonious modeling with information filtering networks. Physical Review E, 94(6): 062306BarfussW.MassaraG. P.Di MatteoT.AsteT.2016Parsimonious modeling with information filtering networksPhysical Review E94606230610.1103/PhysRevE.94.06230628085404Search in Google Scholar

Wang G. J., Xie C., He K., Stanley H. E. (2017) Extreme risk spillover network: application to financial institutions. Quantitative Finance, 1–17WangG. J.XieC.HeK.StanleyH. E.2017Extreme risk spillover network: application to financial institutionsQuantitative Finance11710.1080/14697688.2016.1272762Search in Google Scholar

Aksu M., Kosedag A. (2006) Transparency and disclosure scores and their determinants in the Istanbul Stock Exchange. Corporate Governance: An International Review, 14(4): 277–296.AksuM.KosedagA.2006Transparency and disclosure scores and their determinants in the Istanbul Stock ExchangeCorporate Governance: An International Review14427729610.1111/j.1467-8683.2006.00507.xSearch in Google Scholar

Clauset A., Moore C., Newman M. E. J. (2008) Hierarchical structure and the prediction of missing links in networks. Nature, 453(7191): 98–101ClausetA.MooreC.NewmanM. E. J.2008Hierarchical structure and the prediction of missing links in networksNature45371919810110.1038/nature0683018451861Search in Google Scholar

Lü L., Zhou T. (2011) Link prediction in complex networks: A survey. Physica A: statistical mechanics and its applications, 390(6): 1150–1170L.ZhouT.2011Link prediction in complex networks: A surveyPhysica A: statistical mechanics and its applications39061150117010.1016/j.physa.2010.11.027Search in Google Scholar

Newman M. E. J. (2004) Detecting community structure in network, The European Physical Journal B-Condensed Matter and Complex Systems, 38(2): 321–330NewmanM. E. J.2004Detecting community structure in networkThe European Physical Journal B-Condensed Matter and Complex Systems38232133010.1140/epjb/e2004-00124-ySearch in Google Scholar

Lancichinetti A., Fortunato S., Kertész J. (2009) Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics, 11(3): 033015LancichinettiA.FortunatoS.KertészJ.2009Detecting the overlapping and hierarchical community structure in complex networksNew Journal of Physics11303301510.1088/1367-2630/11/3/033015Search in Google Scholar

Newman M. E. J., Girvan M. (2004) Finding and evaluating community structure in networks. Physical review E, 69(2): 026113NewmanM. E. J.GirvanM.2004Finding and evaluating community structure in networksPhysical review E69202611310.1103/PhysRevE.69.02611314995526Search in Google Scholar

Agarwal G., Kempe D. (2008) Modularity-maximizing graph communities via mathematical programming. The European Physical Journal B, 66(3): 409–418AgarwalG.KempeD.2008Modularity-maximizing graph communities via mathematical programmingThe European Physical Journal B66340941810.1140/epjb/e2008-00425-1Search in Google Scholar

Estrada E., Hatano N. (2010) A vibrational approach to node centrality and vulnerability in complex networks. Physica A: Statistical Mechanics and its Applications, 389(17): 3648–3660EstradaE.HatanoN.2010A vibrational approach to node centrality and vulnerability in complex networksPhysica A: Statistical Mechanics and its Applications389173648366010.1016/j.physa.2010.03.030Search in Google Scholar

Estrada E., Hatano N., Benzi M. (2012) The physics of communicability in complex networks. Physics reports, 514(3): 89–119EstradaE.HatanoN.BenziM.2012The physics of communicability in complex networksPhysics reports51438911910.1016/j.physrep.2012.01.006Search in Google Scholar

Ranjan G., Zhang Z. L. (2013) Geometry of complex networks and topological centrality. Physica A: Statistical Mechanics and its Applications, 392(17): 3833–3845RanjanG.ZhangZ. L.2013Geometry of complex networks and topological centralityPhysica A: Statistical Mechanics and its Applications392173833384510.1016/j.physa.2013.04.013Search in Google Scholar

Feng L., Bhan B. (2015) Understanding dynamic social grouping behaviors of pedestrians. IEEE Journal of Selected Topics in Signal Processing, 9(2): 317–329FengL.BhanB.2015Understanding dynamic social grouping behaviors of pedestriansIEEE Journal of Selected Topics in Signal Processing9231732910.1109/JSTSP.2014.2365765Search in Google Scholar

Davidson J., Savaliya S., Shah J. J. (2013) Least-squares fit of measured points for square line-profiles, Procedia CIRP, 10: 203–210DavidsonJ.SavaliyaS.ShahJ. J.2013Least-squares fit of measured points for square line-profilesProcedia CIRP1020321010.1016/j.procir.2013.08.032Search in Google Scholar

Grant W. S., Voorhies R. C., Itti L. (2013) Finding planes in LiDAR point clouds for real-time registration, In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference, 4347–4354GrantW. S.VoorhiesR. C.IttiL.2013Finding planes in LiDAR point clouds for real-time registrationIn Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference4347435410.1109/IROS.2013.6696980Search in Google Scholar

eISSN:
2444-8656
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics