Open Access

Some Properties Curvture of Lorentzian Kenmotsu Manifolds

   | Mar 31, 2020

Cite

Introduction

Contact structure has most important applications in physics. Many authors gave their valuable and essential results on differential geometry [2], [7], [8]. Firstly contact manifolds were defined by Boothby and Wang [6]. In 1959, Gray defined almost contact manifold by the condition that the structural group of the tangent bundle is reducible to U(n) × 1 [8]. Sasakian introduced Sasaki manifold, which is an almost contact manifold with a special kind a Riemannian metric [15]. Compared to that Sasakian manifolds have only recently become subject of deeper research in mathematics, mechanics and physics [3, 18]. To study manifolds with negative curvature, Bishop and O’Neill introduced the notion of warped product as a generalization of Riemannian product [4]. In 1960’s and 1970’s, when almost contact manifolds were studied as an odd dimensional counterpart of almost complex manifolds, the warped product was used to make examples of almost contact manifolds [18]. In addition, S. Tanno classified the connected (2n + 1) dimensional almost contact manifold M whose automorphism group has maximum dimension (n + 1)2 in [18]. For such a manifold, the sectional curvature of plane sections containing ξ is a constant, say c. Then there are three classes:

c > 0, M is homogeneous Sasakian manifold of constant holomorphic sectional curvature.

c = 0, M is the global Riemannian product of a line or a circle with a Kähler manifold of constant holomorphic sectional curvature.

c < 0, M is warped product space ℝ ×fn.

Kenmotsu obtained some tensorial equations to characterize manifolds of the third case.

In 1972, Kenmotsu abstracted the differential geometric properties of the third case. In [9], Kenmotsu studied a class of almost contact Riemannian manifold which satisfy the following two condition, (Xφ)Y=η(Y)φXg(X,φY)ξXξ=Xη(X)ξ\begin{array}{*{20}{l}}{({\nabla _X}\varphi )Y}&{ = - \eta (Y)\varphi X - g(X,\varphi Y)\xi }\\{{\nabla _X}\xi }&{ = X - \eta (X)\xi }\end{array}

He showed normal an almost contact Riemannian manifold with (1.1) but not quasi Sasakian hence not Sasakian. He characterized warped product space L ×fEn by an almost contact Riemannian manifold with (1.1). Moreover, he showed that every point of an almost contact Riemannian manifold with (1.1) has a neighborhood which is a warped (−ɛ,ɛ) ×f V where f(t) = cet and V is Kähler.

In 1981, Janssens and Vanhecke [10], an almost contact metric manifold satisfiying this (1.1) is called a Kenmotsu manifold. Some authors studied Kenmotsu manifold [1], [12], [13], [16], [19].

At the same time, in the year 1969, Takahashi [17] has introduced the Sasakian manifolds with Pseudo-Riemannian metric and prove that one can study the Lorentzian Sasakian structure with an indefinite metric. Furthermore, in 1990, K. L. Duggal [7] has initiated the space time manifolds with contact structure and analyzed the paper of Takahashi. In 1991, Roşça introduced Lorentzian Kenmotsu manifold [14].

Our aim in the present note is to extend the study of some properties curvature to the setting of a Lorentzian Kenmotsu manifod. We first rewiev, in section 2, basic formula and definition of aLorentzian Kenmotsu manifold. In section 3, we introduced - sectional curvature of Lorentzian Kenmotsu manifold. In section 4, we call semi invariant submanifold of Lorentzian Kenmotsu manifold. In section 5, we study semi invariant submani-fold of Lorentzian Kenmotsu space form, In last section, we investigate semi invariant products of a Lorentzian Kenmotsu manifold.

Lorentzian Kenmotsu Manifolds

Let M be a real (2n + 1)− dimensional differentiable manifold endowed with an almost contact structure (ϕ,η,ξ), where ϕ is a tensor field of type (1,1), η is a 1−form, and ξ is a vector field on M satisfying φ2=I+ηξ,η(ξ)=1.{\varphi ^2} = - I + \eta \otimes \xi ,\,\,\eta (\xi ) = 1. then M is called an almost contact manifold. It follows that ϕ(ξ) = 0,η ○ ϕ = 0 , rankϕ = 2n. If there exists a semi-Riemannian metric g satisfying g(φX,φY)=g(X,Y)ɛη(X)η(Y),g(ξ,ξ)=ɛ=1g(\varphi X,\varphi Y) = g(X,Y) - \varepsilon \eta (X)\eta (Y),\,\,\,\,g(\xi ,\xi ) = \varepsilon = - 1 then (ϕ,η,ξ,g) is called a Lorentzian almost contact structure and M is said to be a Lorentzian almost contact manifold.

For a Lorentzian almost contact manifold we also have η(X) = ɛg(X,ξ). We note that ξ is neither a light-like nor a spacelike vector fields on M. We note that ξ is the time-like vector field. We consider a local basis {e1,...,e2n,ξ } in T M i.e. g(ei,ej)=δijandg(ξ,ξ)=1g({e_i},{e_j}) = {\delta _{ij}}\,{\rm{and}}\,g(\xi ,\xi ) = - 1 that is e1,...,e2n are spacelike vector fields.

Then a 2 −form Φ is defined by Φ(X,Y) = g(X,ϕY), for any X,Y ∈ Γ(T M), called the fundamental 2−form. Moreover, a Lorentzian almost contact manifold is normal if N=[φ,φ]+2dηξ=0N = [\varphi ,\varphi ] + 2d\eta \otimes \xi = 0 where [ϕ,ϕ] is denoting the Nijenhuis tensor field associated to ϕ.

Definition 2.1

Let M be a Lorentzian almost contact manifold of dimension (2n + 1), with (ϕ,ξ ,η,g). M is said to be a Lorentzian almost Kenmotsu manifold if 1−form η is closed and dΦ = −2ηΦ. A normal Lorentzian almost Kenmotsu manifold M is called a Lorentzian Kenmotsu manifold [14].

Theorem 2.1

Let (M,ϕ,ξ,η,g) be a Lorentzian almost contact manifold. M is a Lorentzian Kenmotsu manifold if and only if(Xφ)Y=g(φX,Y)ξ+η(Y)φX\left( {{\nabla _X}\varphi } \right)Y = - g(\varphi X,Y)\xi + \eta (Y)\varphi Xfor all X,Y ∈ Γ(T M), whereis Levi-Civita connection on M [14].

Corollary 2.1

Let M be (2n+1)-dimensional a Lorentzian Kenmotsu manifold with structure (ϕ,ξ,η,g). Then we haveXξ=φ2X{\nabla _X}\xi = - {\varphi ^2}Xfor all X ∈ Γ(T M) [14].

Let K(Xp,Yp) be the sectional curvature for 2−plane spanned by Xp and Yp, pM. M is said to have constant ϕ−holomorphic sectional curvature if K(Xp,ϕXp) is constant for any point p and for any unit vector Xp≠ 0 such that η(Xp) = 0.

A Lorentzian Kenmotsu manifold is said to be a Lorentzian Kenmotsu space form if it has constant ϕ−holomorphic section curvature c and then, it is denoted by M(c). The curvature tensor field R of M(c) is given by, R(X,Y,Z,W)=c+34{g(X,W)g(Y,Z)g(X,Z)g(Y,W)}+c14{g(φX,W)g(φY,Z)g(φX,Z)g(φY,W)2g(φX,Y)g(φZ,W)+g(X,Z)η(Y)η(W)g(Y,Z)η(X)η(W)+g(Y,W)η(X)η(Z)}.\begin{array}{*{20}{l}}{R(X,Y,Z,W)}&{ = \frac{{c + 3}}{4}\{ g(X,W)g(Y,Z) - g(X,Z)g(Y,W)\} }\\{}&{ + \frac{{c - 1}}{4}\{ g(\varphi X,W)g(\varphi Y,Z) - g(\varphi X,Z)g(\varphi Y,W) - 2g(\varphi X,Y)g(\varphi Z,W)}\\{}&{ + g(X,Z)\eta (Y)\eta (W) - g(Y,Z)\eta (X)\eta (W) + g(Y,W)\eta (X)\eta (Z)\} .}\end{array} where X,Y,Z,W ∈ Γ(T M).

By virtue of (2.5), we have the following proposition.

Proposition 2.2

A Lorentzian Kenmotsu manifold of constant ϕ−holomorphic sectional curvature cannot be flat manifold.

Also, the Ricci curvature of M is given by S(X,Y)=2n+1i=1R(Ei,X,Y,Ei),S(X,Y) = \mathop {\mathop {\sum }\limits^{2n + 1} }\limits_{i = 1} R({E_i},X,Y,{E_i}), for X,Y ∈ Γ(T M). Then from (2.5) on M(c), we have, S(X,Y)=(c3)n+(c+1)2g(φX,φY)2nη(X)η(Y)S(X,Y) = \frac{{(c - 3)n + (c + 1)}}{2}g(\varphi X,\varphi Y) - 2n\eta (X)\eta (Y) for all X,Y ∈ Γ(T M).

Proposition 2.3

A Lorentzian Kenmotsu manifold of constant ϕ−holomorphic sectional curvature cannot be η-Einstain manifold.

-sectional curvature of Lorentzian Kenmotsu manifold

Let M be Lorentzian Kenmotsu manifold. Therefore, T M splits into two complementary subbundles Imϕ (whose differentiable distribution is usually denoted by ) and kerϕ (whose differentiable distribution is usually denoted by ) The sectional curvature of planar sections spanned by vector fields of called ℒ −sectional curvature.

In what follows, we denote by the distribution spanned by the structure vector field ξ and by its orthogonal complementary distribution. Then we have, TM=.TM = \mathcal{L} \oplus \mathcal{M}.

If X ∈ ℳ we have ϕX = 0 and if X ∈ ℒ we have η(X) = 0, that is, ϕ2X = −X.

From (2.5) the ℒ −sectional curvature of Lorentzian Kenmotsu space form is given by K(X,Y)=c34+3c+14g(X,φY)2{K_\mathcal{L}}(X,Y) = \frac{{c - 3}}{4} + 3\frac{{c + 1}}{4}g{(X,\varphi Y)^2}

Corollary 3.1

Let M be Lorentzian Kenmotsu space form. If ℒ −sectional curvature K is constant equal to c, then c = −1.

Proof

We can chose X and Y such that g(X,ϕY ) = 0. Thus, from (3.1) we deduce c=c34c=1.c = \frac{{c - 3}}{4} \Rightarrow c = - 1.

Corollary 3.2

Let M be Lorentzian Kenmotsu maifold and X,Y ∈ ℒ. In this case, the scalar curvature of M isτ=n(2n+1).\tau = - n(2n + 1).

Proposition 3.1

Let M be Lorentzian Kenmotsu manifold and X,Y ∈ ℒ. Then M is Einstein manifold.

Proof

For all X,Y ∈ ℒ, using (2.6), we can proof that M is Einstein manifold.

Semi Invariant Submanifolds of a Lorentzian Kenmotsu Space Form
Definition 4.1

An (2m + 1)−dimensional Riemannian submanifold M of Lorentzian Kenmotsu space form M¯\overline M is called a semi invariant submanifold if ξ is tangent to M and there exists on M two differentiable distributions D and Don M satisfying:

T M = DDsp{ξ };

The distribution D is invariant under ϕ, that is ϕDx = Dx for any xM;

The distribution Dis anti-invariant under ϕ, that is, φDxTxM\varphi D_x^ \bot \subseteq T_x^ \bot M M for any xM, where TxM and TxMare the tangent space of M at x.

Now, we choose a local field of orthonormal frames {E1,...,E2p,E2p+1,...,E2m,ξ } on M. Then we have, D=sp{E1,...,E2p},D=sp{E2p+1,...,E2m}D = sp\{ {E_1},...,{E_{2p}}\} ,\,\,\,\,{D^ \bot } = sp\{ {E_{2p + 1}},...,{E_{2m}}\} where dimD = 2p and dimD = q.

Then if p = 0 we have an anti-invariant submanifold tangent to ξ and if q = 0, we have an invariant submanifold. Now, we give the following example.

Example 4.1

In what follows, (ℝ2n+1,ϕ,η,ξ, g) will denote the manifold2n+1with its usual Lorentzian Kenmotsu structure given byη=dz,ξ=zφ(ni=1(Xixi+Yiyi)+Zz)=ni=1(YixiXiyi)+ni=1Yiyizg=e2z(ni=1dxidxi+dyidyi)ɛdzdz\begin{array}{*{20}{c}}{\eta = dz,\,\,\,\xi = \frac{\partial }{{\partial z}}}\\{\varphi (\mathop {\mathop {\sum }\limits^n }\limits_{i = 1} ({X_i}\frac{\partial }{{\partial {x_i}}} + {Y_i}\frac{\partial }{{\partial {y_i}}}) + Z\frac{\partial }{{\partial z}}) = \mathop {\mathop {\sum }\limits^n }\limits_{i = 1} ({Y_i}\frac{\partial }{{\partial {x_i}}} - {X_i}\frac{\partial }{{\partial {y_i}}}) + \mathop {\mathop {\sum }\limits^n }\limits_{i = 1} {Y_i}{y_i}\frac{\partial }{{\partial z}}}\\{g = {e^{ - 2z}}(\mathop {\mathop {\sum }\limits^n }\limits_{i = 1} d{x_i} \otimes d{x_i} + d{y_i} \otimes d{y_i}) - \varepsilon dz \otimes dz}\end{array}(x1,...,xn,y1,...,yn,z) denoting the Cartesian coordinates on2n+1. The consider a submanifold of7defined byM=X(u,v,k,l,t)=(u,k,0,v,0,l,t).M = X(u,v,k,l,t) = (u,k,0,v,0,l,t).

Then local frame of T M is given bye1=x1,e2=y1,e3=x2,e4=y3,e5=z=ξ\begin{array}{l}{e_1} = \frac{\partial }{{\partial {x_1}}},{e_2} = \frac{\partial }{{\partial {y_1}}},\\{e_3} = \frac{\partial }{{\partial {x_2}}},{e_4} = \frac{\partial }{{\partial {y_3}}},\\{e_5} = \frac{\partial }{{\partial z}} = \xi \\\end{array}and we havee1*=x3,e2*=y2e_1^ * = \frac{\partial }{{\partial {x_3}}},\,\,\,e_2^ * = \frac{\partial }{{\partial {y_2}}}which are the a basis of TM. We determine D1 = sp{e1,e2} and D2 = sp{e3,e4}. Then D1, D2are invariant and anti-invariant distribution, respectively. Thus T M = D1D2sp{ξ } is a semi invariant submanifold of7.

Let ¯\overline \nabla be the Levi-Civita connection of M¯\overline M with respect to the g. Then Gauss and Weingarten formulas are given by ¯XY=XY+h(X,Y){\overline \nabla _X}Y = {\nabla _X}Y + h(X,Y)¯XN=XNANX{\overline \nabla _X}N = \nabla _X^ \bot N - {A_N}X for any X,Y ∈ Γ(T M) and N ∈ Γ(TM). ∇ is the connection in the normal bundle, h is the second fundamental from of M¯\overline M and AN is the Weingarten endomorphism associated with N. The second fundamental form h and the shape operator A are related with by g(h(X,Y),N)=g(ANX,Y).g(h(X,Y),N) = g({A_N}X,Y).

Let M be semi invariant submanifold of M¯\overline M . M is said to be totally geodesic if h(X,Y) = 0, for any X,Y ∈ Γ(T M).

We denote by R¯\overline R and R the curvature tensor fields associated with ¯\overline \nabla and ∇ respectively. The Gauss equation is given by R¯(X,Y,Z,W)=R(X,Y,Z,W)+g(h(X,Z),h(Y,W))g(h(X,W),h(Y,Z))\overline R (X,Y,Z,W) = R(X,Y,Z,W) + g(h(X,Z),h(Y,W)) - g(h(X,W),h(Y,Z)) for all X,Y,Z,W ∈ Γ(T M).

On the other hand, let M be a semi invaiant submanifold of a Lorentzian Kenmotsu space form M¯\overline M . Then using (2.5) and (4.5), a semi invariant submanifold M has constant ϕ-sectional curvature c if and only if the Riemannian curvature tensor R¯\overline R satisfied R(X,Y,Z,W)=c+34{g(X,W)g(Y,Z)g(X,Z)g(Y,W)}+c14{g(φX,W)g(φY,Z)g(φX,Z)g(φY,W)2g(φX,Y)g(φZ,W)+g(X,Z)η(Y)η(W)g(Y,Z)η(X)η(W)+g(Y,W)η(X)η(Z)}+g(h(X,W),h(Y,Z))g(h(Y,W),g(X,Z)).\begin{array}{*{20}{l}}{R(X,Y,Z,W)}&{ = \frac{{c + 3}}{4}\{ g(X,W)g(Y,Z) - g(X,Z)g(Y,W)\} }\\{}&{ + \frac{{c - 1}}{4}\{ g(\varphi X,W)g(\varphi Y,Z) - g(\varphi X,Z)g(\varphi Y,W) - 2g(\varphi X,Y)g(\varphi Z,W)}\\{}&{ + g(X,Z)\eta (Y)\eta (W) - g(Y,Z)\eta (X)\eta (W) + g(Y,W)\eta (X)\eta (Z)\} }\\{}&{ + g(h(X,W),h(Y,Z)) - g(h(Y,W),g(X,Z)).}\end{array}

Theorem 4.1

Let M be a semi-invariant submanifold of a Lorentzian Kenmotsu space from M¯(c)\overline M (c) . Then we get Ricci tensor of M, S(X,Y)={c+34(p+q3)+3c12}g(X,Y){c14(p+q6)+c+12}η(X)η(Y)+i=1p+q{g(h(X,Y),h(Ei,Ei))g(h(Ei,Y),h(X,Ei))}\begin{array}{*{20}{l}}{S(X,Y)}&{ = \{ \frac{{c + 3}}{4}(p + q - 3) + 3\frac{{c - 1}}{2}\} g(X,Y)}\\{}&{ - \{ \frac{{c - 1}}{4}(p + q - 6) + \frac{{c + 1}}{2}\} \eta (X)\eta (Y)}\\{}&{ + \mathop {\mathop {\sum }\limits_{i = 1} }\limits^{p + q} \{ g(h(X,Y),h({E_i},{E_i})) - g(h({E_i},Y),h(X,{E_i}))\} }\end{array}for all X,Y ∈ Γ(T M).

Proof

Let Γ(T M) = sp{e1,...,ep,ep+1,...,eq,ep+q+1} such that {e1,...,ep} are tangent to D1 and {ep+1,...,eq} are tangent to D2. Then we have, S(X,Y)=i=1qR(X,Ei,Ei,Y).S(X,Y) = \mathop {\mathop {\sum }\limits_{i = 1} }\limits^p R(X,{E_i},{E_i},Y) + \mathop {\mathop {\sum }\limits_{i = p + 1} }\limits^q R(X,{E_i},{E_i},Y) + R(X,\xi ,\xi ,Y).

Now, using (4.6), we get S(X,Y)={c+34(p1)+3c14}g(X,Y)+c14(3p)η(X)η(Y)+i=1p{g(h(X,Y),h(Ei,Ei))g(h(Ei,Y),h(X,Ei))}+{c+34(q1)+3c14}g(X,Y)+c14(3q)η(X)η(Y)+i=p+1qg(h(X,Y),h(Ei,Ei))g(h(Ei,Y),h(X,Ei))c+34g(X,Y){c+34+c14}η(X)η(Y)\begin{array}{*{20}{l}}{S(X,Y)}&{ = \{ \frac{{c + 3}}{4}(p - 1) + 3\frac{{c - 1}}{4}\} g(X,Y) + \frac{{c - 1}}{4}(3 - p)\eta (X)\eta (Y)}\\{}&{ + \mathop {\mathop {\sum }\limits_{i = 1} }\limits^p \{ g(h(X,Y),h({E_i},{E_i})) - g(h({E_i},Y),h(X,{E_i}))\} }\\{}&{ + \{ \frac{{c + 3}}{4}(q - 1) + 3\frac{{c - 1}}{4}\} g(X,Y) + \frac{{c - 1}}{4}(3 - q)\eta (X)\eta (Y)}\\{}&{ + \mathop {\mathop {\sum }\limits_{i = p + 1} }\limits^q g(h(X,Y),h({E_i},{E_i})) - g(h({E_i},Y),h(X,{E_i}))}\\{}&{ - \frac{{c + 3}}{4}g(X,Y) - \{ \frac{{c + 3}}{4} + \frac{{c - 1}}{4}\} \eta (X)\eta (Y)}\end{array} which gives proof.

Corollary 4.1

Let M be a semi-invariant submanifold of a Lorentzian Kenmotsu space fromM¯(c)\overline M (c). If M is totally geodesic, then M is an η-Einstein manifold.

Proposition 4.2

Let M be a semi-invariant submanifold of a Lorentzian Kenmotsu space fromM¯(c)\overline M (c) . Then we have scalar curvatureτ={c+34(p+q3)+3c12}(p+q1)+c14(p+q6)+c+12+1(p+q+1)2H2+h2.\begin{array}{*{20}{l}}\tau &{ = \{ \frac{{c + 3}}{4}(p + q - 3) + 3\frac{{c - 1}}{2}\} (p + q - 1)}\\{}&{ + \frac{{c - 1}}{4}(p + q - 6) + \frac{{c + 1}}{2} + \frac{1}{{{{(p + q + 1)}^2}}}{{\left\| H \right\|}^2} + {{\left\| h \right\|}^2}.}\end{array}

Proof

From (4.7) by using X = Y = ek we get τ=k=1p+q+1S(ek,ek).\tau = \mathop {\mathop {\sum }\limits_{k = 1} }\limits^{p + q + 1} S({e_k},{e_k}).

The proof is completed.

Proposition 4.3

Let M be semi invariant submanifold of Lorentzian Kenmotsu space formM¯(c)\overline M (c). ThenR(X,Y,Z,W)=c+34{g(X,W)g(Y,Z)g(X,Z)g(Y,W)}+g(h(X,W),h(Y,Z))g(h(Y,W),g(X,Z))\begin{array}{*{20}{l}}{R(X,Y,Z,W)}&{ = \frac{{c + 3}}{4}\{ g(X,W)g(Y,Z) - g(X,Z)g(Y,W)\} }\\{}&{ + g(h(X,W),h(Y,Z)) - g(h(Y,W),g(X,Z))}\end{array}for all X,Y,Z,W ∈ Γ(D).

Proof

Using (4.6). For all X,Y,Z,W ∈ Γ(D), since ϕX,ϕY,ϕZ,ϕWϕDT M we have (4.8).

Corollary 4.2

Let M be semi invariant submanifold of Lorentzian Kenmotsu space formM¯(c)\overline M (c). If Dis totally geodesic, then Dis flat if and only if c = −3.

Proposition 4.4

Let M be semi invariant submanifold of Lorentzian Kenmotsu space formM¯(c)\overline M (c). ThenS(X,Y)=c+34(q1)g(X,Y)+i=1q{g(h(X,Y),h(Ei,Ei))g(h(Ei,Y),h(X,Ei))}S(X,Y) = \frac{{c + 3}}{4}(q - 1)g(X,Y) + \mathop {\mathop {\sum }\limits_{i = 1} }\limits^q \{ g(h(X,Y),h({E_i},{E_i})) - g(h({E_i},Y),h(X,{E_i}))\} for all X,Y ∈ Γ(D), where S is Ricci tensor.

Proof

Using (4.8). From S(X,Y)=i=1qR(X,Ei,Ei,Y)S(X,Y) = \mathop {\mathop {\sum }\limits_{i = 1} }\limits^q R(X,{E_i},{E_i},Y) , for all X,Y ∈ Γ(D), we have equation (4.9).

Corollary 4.3

Let M be a semi-invariant submanifold of a Lorentzian Kenmotsu space from M¯\overline M . If Dis totally geodesic, then distribution Dis Einstein.

Corollary 4.4

Let M be semi inavariant submanifold of Lorentzian Kenmotsu space formM¯(c)\overline M (c). If Dis totally geodesic, thenτD=c+34q(q1){\tau _{{D^ \bot }}} = \frac{{c + 3}}{4}q(q - 1)where τ is the scalar curvature.

Proposition 4.5

Let M be semi invariant submanifold of Lorentzian Kenmotsu space form M¯(c)\overline M (c)(c). Then the Ricci curvature determined by DS(X,Y)={c+34(p1)+3c14}g(X,Y)S(X,Y) = \{ \frac{{c + 3}}{4}(p - 1) + 3\frac{{c - 1}}{4}\} g(X,Y)for all X,Y ∈ Γ(D).

Proof

For all X,Y ∈ Γ(D), from (4.8) we have R(X,Y,Z,W)=c+34{g(X,W)g(Y,Z)g(X,Z)g(Y,W)}+c14{g(X,φW)g(Y,φZ)g(X,φZ)g(Y,φW)\begin{array}{*{20}{l}}{R(X,Y,Z,W)}&{ = \frac{{c + 3}}{4}\{ g(X,W)g(Y,Z) - g(X,Z)g(Y,W)\} }\\{}&{ + \frac{{c - 1}}{4}\{ g(X,\varphi W)g(Y,\varphi Z) - g(X,\varphi Z)g(Y,\varphi W)}\end{array}

Then, from S(X,Y)=i=1pR(X,Ei,Ei,Y)S(X,Y) = \mathop {\mathop {\sum }\limits_{i = 1} }\limits^p R(X,{E_i},{E_i},Y) , using last equation, this complates the proof.

Corollary 4.5

Let M be semi invariant submanifold of Lorentzian Kenmotsu space formM¯(c)\overline M (c). Then the scalar curvature determined by D is givenτD=p(c+3)2p1)+3(c1)4.{\tau _D} = p\frac{{(c + 3)2p - 1) + 3(c - 1)}}{4}.

Corollary 4.6

Let M be a semi-invariant submanifold of a Lorentzian Kenmotsu space from M¯\overline M . If D is totally geodesic, then distribution D is Einstein.

Theorem 4.6

Let M be semi invariant submanifold of Lorentzian Kenmotsu space formM¯(c)\overline M (c). Then, ϕ-sectional curvature of D is −c if and only if D is totally geodesic.

Proof

Using (4.6). For all X ∈ Γ(D), R(X,φX,X,φX)=c+34{g(X,φX)g(φX,X)g(X,X)g(φX,φX)}+c14{g(φX,φX)g(φ2X,X)g(φX,X)g(φ2X,φX)2g(φX,φX)g(φX,φX)+g(h(X,φX),h(φX,X))g(h(φX,φX),h(X,X)).\begin{array}{*{20}{l}}{R(X,\varphi X,X,\varphi X)}&{ = \frac{{c + 3}}{4}\{ g(X,\varphi X)g(\varphi X,X) - g(X,X)g(\varphi X,\varphi X)\} }\\{}&{ + \frac{{c - 1}}{4}\{ g(\varphi X,\varphi X)g({\varphi ^2}X,X) - g(\varphi X,X)g({\varphi ^2}X,\varphi X)}\\{}&{ - 2g(\varphi X,\varphi X)g(\varphi X,\varphi X)}\\{}&{ + g(h(X,\varphi X),h(\varphi X,X)) - g(h(\varphi X,\varphi X),h(X,X)).}\end{array}

Then, R(X,φX,X,φX)=c2h(X,X)2.R(X,\varphi X,X,\varphi X) = - c - 2{\left\| {h(X,X)} \right\|^2}.

Semi Invarinat Product in a Lorentzian Kenmotsu Space Form

Let M be a semi invariant submanifold of a Lorentzian Kenmotsu space form M¯\overline M . We say that M is a semi invariant product if the distribution Dsp{ξ } is integrable and locally M is a Riemannian product M1× M2, where M1 (resp. M2) is leaf of Dsp{ξ } (resp. D ). If we have pq ≠ 0, we say that M is a proper semi invariant product.

Theorem 5.1

Let M be a proper semi invariant product of a Lorentzian Kenmotsu space formM¯(c)\overline M (c). ThenR(X,φX,Z,φZ)=2(h(X,Z)2c14)R(X,\varphi X,Z,\varphi Z) = 2({\left\| {h(X,Z)} \right\|^2} - \frac{{c - 1}}{4})for any unit vector fields XD and ZD.

Proof

Using (4.6) and ϕZ ∈ Γ(ϕD) ⊂ T M this complates the proof.

Theorem 5.2

Let M be a proper semi invariant product of a Lorentzian Kenmotsu space formM¯(c)\overline M (c). Then, h2pq(1c)+2qp{\left\| h \right\|^2} \ge pq(1 - c) + 2qp

Proof

Since h is fundamental form, we have h2=i,j=12ph(Ei,Ej)2+k,l=2p+12mh(Ek,El)2+2i=12pk=2p+12mh(Ei,Ek)2+2k=2p+12mh(Ek,ξ)2\begin{array}{*{20}{l}}{{{\left\| h \right\|}^2}}&{ = \mathop {\mathop {\sum }\limits_{i,j = 1} }\limits^{2p} {{\left\| {h({E_i},{E_j})} \right\|}^2} + \mathop {\mathop {\sum }\limits_{k,l = 2p + 1} }\limits^{2m} {{\left\| {h({E_k},{E_l})} \right\|}^2}}\\{}&{ + 2\mathop {\mathop {\sum }\limits_{i = 1} }\limits^{2p} \mathop {\mathop {\sum }\limits_{k = 2p + 1} }\limits^{2m} {{\left\| {h({E_i},{E_k})} \right\|}^2} + 2\mathop {\mathop {\sum }\limits_{k = 2p + 1} }\limits^{2m} {{\left\| {h({E_k},\xi )} \right\|}^2}}\end{array} from (4.1) h2=pq(1c)+2qp+i,j=12ph(Ei,Ej)2+k,l=2p+12mh(Ek,El)2{\left\| h \right\|^2} = pq(1 - c) + 2qp + \mathop {\mathop {\sum }\limits_{i,j = 1} }\limits^{2p} {\left\| {h({E_i},{E_j})} \right\|^2} + \mathop {\mathop {\sum }\limits_{k,l = 2p + 1} }\limits^{2m} {\left\| {h({E_k},{E_l})} \right\|^2} which gives (5.2).

Proposition 5.3

Let M be a proper semi invariant product of an a Lorentzian Kenmotsu space formM¯(c)\overline M (c). Then, R(X,Y,Z,W)=0R(X,Y,Z,W) = 0for all X,Y ∈ Γ(D ⊕ sp{ξ }) and Z,W ∈ Γ(D ).

Proof

Let M be semi invariant submanifold of Lorentzian Kenmotsu manifold M¯\overline M . Then for all Z,W ∈ Γ(D), φZ,φWφDTM.\varphi Z,\varphi W \in \varphi {D^ \bot } \subset T{M^ \bot }.

Using (4.6), which complates the proof.

Proposition 5.4

Let M be a proper semi invariant product of a Lorentzian Kenmotsu M¯\overline M . ThenR(X,Y,Z,W)=0R(X,Y,Z,W) = 0for all X,Y ∈ Γ(D) and Z,W ∈ Γ(D⊕ sp{ξ }).

eISSN:
2444-8656
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics