Open Access

Solution of the Maximum of Difference Equation xn+1=max{Axn1,ynxn};yn+1=max{Ayn1,xnyn}\matrix{ {x_{n + 1} = max \left\{ {{A \over {x_{n - 1} }},{{y_n } \over {x_n }}} \right\};} & {y_{n + 1} = max \left\{ {{A \over {y_{n - 1} }},{{x_n } \over {y_n }}} \right\}}}


Cite

Introduction

Recently, there has been a great concern in studying nonlinear difference equations since many models describing real life situations in population biology, economics, probability theory, genetics, psychology, sociology etc. are represented by these equations. See for example [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28].

Definition 1

Let I be an interval of reel numbers and let f : Is+1I be a continuously differentiable function where s is a non-negative integer. Consider the difference equation xn+1=f(xn,xn1,...,xns)forn=0,1,...,\matrix{ {x_{n + 1} = f\left( {x_n ,x_{n - 1} ,...,x_{n - s} } \right){\rm{for}}} & {n = 0,1,...,}} with the initial values xs,...,x0I. A point x¯\overline x called an equilibrium point of equation 2. if x¯=f(x¯,...,x¯)\overline x = f\left( {\overline x ,...,\overline x } \right) .

Definition 2

A positive semi sycle of a solution {xn}n=s\left\{ {x_n } \right\}_n^\infty = - s of 2 consist of a string of terms {xl,xl+1,...,xm} all greater than or equal to equilibrium x¯\overline x with l ≥ −s and m ≤ ∞ such that either l = −s or l > s and xl1<x¯x_{l - 1} < \overline x and either m = ∞ or m < ∞ and xm+1<x¯x_{m + 1} < \overline x .

Definition 3

A negative semisycle of a solution {xn}n=s\left\{ {x_n } \right\}_n^\infty = - s of 2 consist of a string of terms {xl,xl+1,...,xm} all less than or equal to equilibrium x¯\overline x with l ≥ −s and m ≤ ∞ such that either l = −s or l > − s and xl1x¯x_{l - 1} \ge \overline x and either m = ∞ or m ≤ ∞ and xm+1x¯x_{m + 1} \ge \overline x .

Main Results

In some cases of parameter A and initial conditions, the solution of the system of max type difference equation has been studied. Let x¯\overline x and y¯\overline y be the unique positive equilibrium of 1, then clearly, x¯=max{Ax¯,y¯x¯};y¯=max{Ay¯,x¯y¯}.\overline x = max \left\{ {{A \over {\overline x }},{{\overline y } \over {\overline x }}} \right\};\overline y = max \left\{ {{A \over {\overline y }},{{\overline x } \over {\overline y }}} \right\}.

The parameter A is the greatest value in all initial conditions that we select, so x¯=Ax¯x¯2=Ax¯=±A;y¯=Ay¯y¯2=Ay¯=±A,\overline x = {A \over {\overline x }} \Rightarrow \overline x ^2 = A \Rightarrow \overline x = \pm \sqrt A ;\quad \overline y = {A \over {\overline y }} \Rightarrow \overline y ^2 = A \Rightarrow \overline y = \pm \sqrt A , we can obtain x¯=A\overline x = \sqrt A and y¯=A\overline y = \sqrt A .

Lemma 1

Assume that, A and x0,x−1,y0,y−1are positive integer sequence for 1

A > x0 > x−1 > y0 > y−1,A > x0 > y0 > x−1 > y−1,A > y0 > x0 > x−1 > y−1,

Then the following statements are true:

n ≥ 0 for xn and n ≥ 1 for yn

Every positive semi-cycle consist two term.

Every negative semi-cycle consist two term.

Every positive semi-cycle of length two is followed by a negative semi-cycle of length two.

Every negative semi-cycle of length two is followed by a positive semi-cycle of length two.

Proof

A > x0 > x−1 > y0 > y−1,A > x0 > y0 > x−1 > y−1,A > y0 > x0 > x−1 > y−1 The solution xn and yn can be obtained as follows: x1=max{Ax1,y0x0}=Ax1<x¯;y1=max{Ay1,x0y0}=Ay1>y¯,x_1 = max \left\{ {{A \over {x_{ - 1} }},{{y_0 } \over {x_0 }}} \right\} = {A \over {x_{ - 1} }} < \overline x ;\quad y_1 = max \left\{ {{A \over {y_{ - 1} }},{{x_0 } \over {y_0 }}} \right\} = {A \over {y_{ - 1} }} > \overline y ,x2=max{Ax0,y1x1}=max{Ax0,x1y1}=x1y1<x¯;y2=max{Ay0,x1y1}=max{Ay0,y1x1}=Ay0<y¯,x_2 = max \left\{ {{A \over {x_0 }},{{y_1 } \over {x_1 }}} \right\} = max \left\{ {{A \over {x_0 }},{{x_{ - 1} } \over {y_{ - 1} }}} \right\} = {{x_{ - 1} } \over {y_{ - 1} }} < \overline x ;\quad y_2 = max \left\{ {{A \over {y_0 }},{{x_1 } \over {y_1 }}} \right\} = max \left\{ {{A \over {y_0 }},{{y_{ - 1} } \over {x_{ - 1} }}} \right\} = {A \over {y_0 }} < \overline y ,x3=max{Ax1,y2x2}=max{x1,Ay1x1y0}=x1>x¯;y3=max{Ay1,x2y2}=max{y1,x1y0Ay1}=y1<y¯,x_3 = max \left\{ {{A \over {x_1 }},{{y_2 } \over {x_2 }}} \right\} = max \left\{ {x_{ - 1} ,{{Ay_{ - 1} } \over {x_{ - 1} y_0 }}} \right\} = x_{ - 1} > \overline x ;\quad y_3 = max \left\{ {{A \over {y_1 }},{{x_2 } \over {y_2 }}} \right\} = max \left\{ {y_{ - 1} ,{{x_{ - 1} y_0 } \over {Ay_{ - 1} }}} \right\} = y_{ - 1} < \overline y ,x4=max{Ax2,y3x3}=max{Ay1x1,y1x1}=Ay1x1>x¯;y4=max{Ay2,x3y3}=max{y0,x1y1}=y0>y¯,x_4 = max \left\{ {{A \over {x_2 }},{{y_3 } \over {x_3 }}} \right\} = max \left\{ {{{Ay_{ - 1} } \over {x_{ - 1} }},{{y_{ - 1} } \over {x_{ - 1} }}} \right\} = {{Ay_{ - 1} } \over {x_{ - 1} }} > \overline x ;\quad y_4 = max \left\{ {{A \over {y_2 }},{{x_3 } \over {y_3 }}} \right\} = max \left\{ {y_0 ,{{x_{ - 1} } \over {y_{ - 1} }}} \right\} = y_0 > \overline y ,x5=max{Ax3,y4x4}=max{Ax1,x1y0Ay1}=Ax1<x¯;y5=max{Ay3,x4y4}=max{Ay1,Ay1x1y0}=Ay1>y¯,x_5 = max \left\{ {{A \over {x_3 }},{{y_4 } \over {x_4 }}} \right\} = max \left\{ {{A \over {x_{ - 1} }},{{x_{ - 1} y_0 } \over {Ay_{ - 1} }}} \right\} = {A \over {x_{ - 1} }} < \overline x ;\quad y_5 = max \left\{ {{A \over {y_3 }},{{x_4 } \over {y_4 }}} \right\} = max \left\{ {{A \over {y_{ - 1} }},{{Ay_{ - 1} } \over {x_{ - 1} y_0 }}} \right\} = {A \over {y_{ - 1} }} > \overline y ,x6=max{Ax4,y5x5}=max{x1y1,x1y1}=x1y1<x¯;y6=max{Ay4,x5y5}=max{Ay0,y1x1}=Ay0<y¯,x_6 = max \left\{ {{A \over {x_4 }},{{y_5 } \over {x_5 }}} \right\} = max \left\{ {{{x_{ - 1} } \over {y_{ - 1} }},{{x_{ - 1} } \over {y_{ - 1} }}} \right\} = {{x_{ - 1} } \over {y_{ - 1} }} < \overline x ;\quad y_6 = max \left\{ {{A \over {y_4 }},{{x_5 } \over {y_5 }}} \right\} = max \left\{ {{A \over {y_0 }},{{y_{ - 1} } \over {x_{ - 1} }}} \right\} = {A \over {y_0 }} < \overline y ,x7=max{Ax5,y6x6}=max{x1,Ay1y0x1}=x1>x¯;y7=max{Ay5,x6y6}=max{y1,y0x1Ay1}=y1<y¯,x_7 = max \left\{ {{A \over {x_5 }},{{y_6 } \over {x_6 }}} \right\} = max \left\{ {x_{ - 1} ,{{Ay_{ - 1} } \over {y_0 x_{ - 1} }}} \right\} = x_{ - 1} > \overline x ;\quad y_7 = max \left\{ {{A \over {y_5 }},{{x_6 } \over {y_6 }}} \right\} = max \left\{ {y_{ - 1} ,{{y_0 x_{ - 1} } \over {Ay_{ - 1} }}} \right\} = y_{ - 1} < \overline y ,x8=max{Ax6,y7x7}=max{Ay1x1,y1x1}=Ay1x1>x¯;y8=max{Ay6,x7y7}=max{y1,x1y1}=y0>y¯,\matrix{ {x_8 = max \left\{ {{A \over {x_6 }},{{y_7 } \over {x_7 }}} \right\} = max \left\{ {{{Ay_{ - 1} } \over {x_{ - 1} }},{{y_{ - 1} } \over {x_{ - 1} }}} \right\} = {{Ay_{ - 1} } \over {x_{ - 1} }} > \overline x ;\quad y_8 = max \left\{ {{A \over {y_6 }},{{x_7 } \over {y_7 }}} \right\} = max \left\{ {y_{ - 1} ,{{x_{ - 1} } \over {y_{ - 1} }}} \right\} = y_0 > \overline y ,} \cr \vdots}

Hence we obtained. x1<x¯,x2<x¯,x3>x¯,x4>x¯,x5<x¯,x6<x¯,x7>x¯,x8>x¯,...x_1 < \overline x ,x_2 < \overline x ,x_3 > \overline x ,x_4 > \overline x ,x_5 < \overline x ,x_6 < \overline x ,x_7 > \overline x ,x_8 > \overline x ,...

y1>y¯,y2<y¯,y3<y¯,y4>y¯,y5>y¯,y6<y¯,y7<y¯,y8>y¯,...y_1 > \overline y ,y_2 < \overline y ,y_3 < \overline y ,y_4 > \overline y ,y_5 > \overline y ,y_6 < \overline y ,y_7 < \overline y ,y_8 > \overline y ,...

Hence, the solution n ≥ 0 for xn and n ≥ 1 for yn, every positive semi-cycle consists of two terms, every negative semi-cycle consists of two terms

Lemma 2

Assume that, A and x0,x−1,y0,y−1are positive integer sequence for 1

A > x0 > y0 > y−1 > x−1,A > y0 > x0 > y−1 > x−1,A > y0 > y−1 > x0 > x−1,

Then the following statements are true:

n ≥ 1 for xn and n ≥ 0 for yn

Every positive semi-cycle consist two term.

Every negative semi-cycle consist two term.

Every positive semi-cycle of length two is followed by a negative semi-cycle of length two.

Every negative semi-cycle of length two is followed by a positive semi-cycle of length two.

Proof

Lemma 2 proof’s can be obtained similarly Lemma 1

Lemma 3

Assume that, A and x0,x−1,y0,y−1are positive integer sequence for 1

A > x−1 > y−1 > x0 > y0,A > y−1 > x−1 > x0 > y0,A > y−1 > x0 > x−1 > y0,

Then the following statements are true:

n ≥ 0 for xn and n ≥ 1 for yn

Every positive semi-cycle consist two term.

Every negative semi-cycle consist two term.

Every positive semi-cycle of length two is followed by a negative semi-cycle of length two.

Every negative semi-cycle of length two is followed by a positive semi-cycle of length two.

Proof

Lemma 3 proof’s can be obtained similarly Lemma 1

Theorem 4

Let (xn, yn) be a solution of 1 for

A > x0 > x−1 > y0 > y−1,A > x0 > y0 > x−1 > y−1,A > y0 > x0 > x−1 > y−1.

Then for n = 0, 1,... we have, xn={Ax1,x1y1,x1,Ay1x1,...},yn={Ay1,Ay0,y1,y0,...}.\matrix{ {x_n = \left\{ {{A \over {x_{ - 1} }},{{x_{ - 1} } \over {y_{ - 1} }},x_{ - 1} ,{{Ay_{ - 1} } \over {x_{ - 1} }},...} \right\},} \cr {y_n = \left\{ {{A \over {y_{ - 1} }},{A \over {y_0 }},y_{ - 1} ,y_0 ,...} \right\}.}}

Proof

We obtain, x1=max{Ax1,y0x0}=Ax1;y1=max{Ay1,x0y0}=Ay1,x_1 = max \left\{ {{A \over {x_{ - 1} }},{{y_0 } \over {x_0 }}} \right\} = {A \over {x_{ - 1} }};\quad y_1 = max \left\{ {{A \over {y_{ - 1} }},{{x_0 } \over {y_0 }}} \right\} = {A \over {y_{ - 1} }}, x2=max{Ax0,y1x1}=max{Ax0,x1y1}=x1y1;y2=max{Ay0,x1y1}=max{Ay0,y1x1}=Ay0,x_2 = max \left\{ {{A \over {x_0 }},{{y_1 } \over {x_1 }}} \right\} = max \left\{ {{A \over {x_0 }},{{x_{ - 1} } \over {y_{ - 1} }}} \right\} = {{x_{ - 1} } \over {y_{ - 1} }};\quad y_2 = max \left\{ {{A \over {y_0 }},{{x_1 } \over {y_1 }}} \right\} = max \left\{ {{A \over {y_0 }},{{y_{ - 1} } \over {x_{ - 1} }}} \right\} = {A \over {y_0 }},x3=max{Ax1,y2x2}=max{x1,Ay1x1y0}=x1;y3=max{Ay1,x2y2}=max{y1,x1y0Ay1}=y1,x_3 = max \left\{ {{A \over {x_1 }},{{y_2 } \over {x_2 }}} \right\} = max \left\{ {x_{ - 1} ,{{Ay_{ - 1} } \over {x_{ - 1} y_0 }}} \right\} = x_{ - 1} ;\quad y_3 = max \left\{ {{A \over {y_1 }},{{x_2 } \over {y_2 }}} \right\} = max \left\{ {y_{ - 1} ,{{x_{ - 1} y_0 } \over {Ay_{ - 1} }}} \right\} = y_{ - 1} ,x4=max{Ax2,y3x3}=max{Ay1x1,y1x1}=Ay1x1;y4=max{Ay2,x3y3}=max{y0,x1y1}=y0,x_4 = max \left\{ {{A \over {x_2 }},{{y_3 } \over {x_3 }}} \right\} = max \left\{ {{{Ay_{ - 1} } \over {x_{ - 1} }},{{y_{ - 1} } \over {x_{ - 1} }}} \right\} = {{Ay_{ - 1} } \over {x_{ - 1} }};\quad y_4 = max \left\{ {{A \over {y_2 }},{{x_3 } \over {y_3 }}} \right\} = max \left\{ {y_0 ,{{x_{ - 1} } \over {y_{ - 1} }}} \right\} = y_0 ,x5=max{Ax3,y4x4}=max{Ax1,x1y0Ay1}=Ax1;y5=max{Ay3,x4y4}=max{Ay1,Ay1x1y0}=Ay1,x_5 = max \left\{ {{A \over {x_3 }},{{y_4 } \over {x_4 }}} \right\} = max \left\{ {{A \over {x_{ - 1} }},{{x_{ - 1} y_0 } \over {Ay_{ - 1} }}} \right\} = {A \over {x_{ - 1} }};\quad y_5 = max \left\{ {{A \over {y_3 }},{{x_4 } \over {y_4 }}} \right\} = max \left\{ {{A \over {y_{ - 1} }},{{Ay_{ - 1} } \over {x_{ - 1} y_0 }}} \right\} = {A \over {y_{ - 1} }},x6=max{Ax4,y5x5}=max{x1y1,x1y1}=x1y1;y6=max{Ay4,x5y5}=max{Ay0,y1x1}=Ay0,x_6 = max \left\{ {{A \over {x_4 }},{{y_5 } \over {x_5 }}} \right\} = max \left\{ {{{x_{ - 1} } \over {y_{ - 1} }},{{x_{ - 1} } \over {y_{ - 1} }}} \right\} = {{x_{ - 1} } \over {y_{ - 1} }};\quad y_6 = max \left\{ {{A \over {y_4 }},{{x_5 } \over {y_5 }}} \right\} = max \left\{ {{A \over {y_0 }},{{y_{ - 1} } \over {x_{ - 1} }}} \right\} = {A \over {y_0 }},x7=max{Ax5,y6x6}=max{x1,Ay1y0x1}=x1;y7=max{Ay5,x6y6}=max{y1,y0x1Ay1}=y1,x_7 = max \left\{ {{A \over {x_5 }},{{y_6 } \over {x_6 }}} \right\} = max \left\{ {x_{ - 1} ,{{Ay_{ - 1} } \over {y_0 x_{ - 1} }}} \right\} = x_{ - 1} ;\quad y_7 = max \left\{ {{A \over {y_5 }},{{x_6 } \over {y_6 }}} \right\} = max \left\{ {y_{ - 1} ,{{y_0 x_{ - 1} } \over {Ay_{ - 1} }}} \right\} = y_{ - 1} ,x8=max{Ax6,y7x7}=max{Ay1x1,y1x1}=Ay1x1;y8=max{Ay6,x7y7}=max{y1,x1y1}=y0,\matrix{{x_8 = \max \left\{ {{A \over {x_6 }},{{y_7 } \over {x_7 }}} \right\} = \max \left\{ {{{Ay_{ - 1} } \over {x_{ - 1} }},{{y_{ - 1} } \over {x_{ - 1} }}} \right\} = {{Ay_{ - 1} } \over {x_{ - 1} }};\quad y_8 = \max \left\{ {{A \over {y_6 }},{{x_7 } \over {y_7 }}} \right\} = \max \left\{ {y_{ - 1} ,{{x_{ - 1} } \over {y_{ - 1} }}} \right\} = y_0 ,} \cr \vdots}

Thus, xn={Ax1,x1y1,x1,Ay1x1,...},yn={Ay1,Ay0,y1,y0,...},\matrix{ {x_n = \left\{ {{A \over {x_{ - 1} }},{{x_{ - 1} } \over {y_{ - 1} }},x_{ - 1} ,{{Ay_{ - 1} } \over {x_{ - 1} }},...} \right\},} \cr {y_n = \left\{ {{A \over {y_{ - 1} }},{A \over {y_0 }},y_{ - 1} ,y_0 ,...} \right\},}} the solutions are shown to be 4-peirod

Theorem 5

Let (xn, yn) be a solution of 1 for

A > x0 > y0 > y−1 > x−1,A > y0 > x0 > y−1 > x−1,A > y0 > y−1 > x0 > x−1

Then for n = 0, 1,... we have, xn={Ax1,Ax0,x1,x0,...},yn={Ay1,y1x1,y1,Ax1y1,...}.\matrix{ {x_n = \left\{ {{A \over {x_{ - 1} }},{A \over {x_0 }},x_{ - 1} ,x_0 ,...} \right\},} \cr {y_n = \left\{ {{A \over {y_{ - 1} }},{{y_{ - 1} } \over {x_{ - 1} }},y_{ - 1} ,{{Ax_{ - 1} } \over {y_{ - 1} }},...} \right\}. }}

Proof

Proof of the Theorem 5 can be obtain similar way to the Theorem 4

Theorem 6

Let (xn, yn) be a solution of 1 for

A > x−1 > y−1 > x0 > y0,A > y−1 > x−1 > x0 > y0,A > y−1 > x0 > x−1 > y0

Then for n = 0, 1,... we have, xn={Ax1,Ax0,x1,x0,...},yn={x0y0,Ay0,Ay0x0,y0,...}.\matrix { {x_n = \left\{ {{A \over {x_{ - 1} }},{A \over {x_0 }},x_{ - 1} ,x_0 ,...} \right\},} \cr {y_n = \left\{ {{{x_0 } \over {y_0 }},{A \over {y_0 }},{{Ay_0 } \over {x_0 }},y_0 ,...} \right\}. }}

Proof

Proof of the Theorem 6 can be obtain similar way to the Theorem 4

Example 7

If the initial conditions are selected follows for Lemma 1 A > x0 > x−1 > y0 > y−1: A = 36;x[−1] = 25;x[0] = 30;y[−1] = 15;y[0] = 20;

The graph of the solution is given below:

xn = {1.44, 1.66667, 25., 21.6, 1.44, 1.66667, 25., 21.6, 1.44, 1.66667, 25., 21.6, 1.44, 1.66667, 25., 21.6, 1.44, 1.66667, 25., 21.6, 1.44, 1.66667, 25., 21.6, 1.44, 1.66667, 25., 21.6, 1.44, 1.66667, 25., 21.6, 1.44, 1.66667, 25., 21.6, 1.44, 1.66667, 25., 21.6, 1.44, 1.66667, 25., 21.6, 1.44, 1.66667, 25., 21.6, 1.44, 1.66667, 25., 21.6, 1.44, 1.66667, 25., 21.6, 1.44, 1.66667, 25., 21.6, 1.44,...}.

yn = {2.4, 1.8, 15., 20., 2.4, 1.8, 15., 20., 2.4, 1.8, 15., 20., 2.4, 1.8, 15., 20., 2.4, 1.8, 15., 20., 2.4, 1.8, 15., 20., 2.4, 1.8, 15., 20., 2.4, 1.8, 15., 20., 2.4, 1.8, 15., 20., 2.4, 1.8, 25., 21.6, 1.44, 1.66667, 25., 21.6, 1.44, 1.66667, 25., 21.6, 1.44, 1.66667, 25., 21.6, 1.44, 15., 20., 2.4, 1.8, 15., 20., 2.4, 1.8, 15., 20., 2.4, 1.8, 15., 20., 2.4, 1.8, 15., 20., 2.4, 1.8, 15., 20., 2.4,...}.

Fig. 1

xn graph solution.

Fig. 2

yn graph solution.

eISSN:
2444-8656
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics