Open Access

Global Attractors for the Higher-Order Evolution Equation


Cite

Introduction

We consider the following nonlinear evolution equation {utt+(Δ)mu+(Δ)mut+(Δ)mutt+g(x,u)=f(x),(x,t)Ω×(0,),u(x,0)=u0(x),ut(x,0)=u1(x),xΩ,iu(x,t)ivi=0,i=1,2,,m1,(x,t)Ω×[0,),\left\{ {\begin{array}{*{20}{c}} {{u_{tt}} + {{( - \Delta )}^m}u + {{( - \Delta )}^m}{u_t} + {{( - \Delta )}^m}{u_{tt}} + g(x,u) = f(x),}&{(x,t) \in \Omega \times (0,\infty ),}\\ {u(x,0) = {u_0}(x),{u_t}(x,0) = {u_1}(x),}&{x \in \Omega ,}\\ {\frac{{{\partial ^i}u(x,t)}}{{{\partial ^i}{v^i}}} = 0,i = 1,2, \ldots ,m - 1,}&{(x,t) \in \partial \Omega \times [0,\infty ),} \end{array}} \right. where in a bounded domain Ω ⊂ Rn with smooth boundary Ω, the assumption on f, g, u0 and u1 will be made below.

When m = 1, the equation (1.1) is following form uttΔuΔutΔutt+g(x,u)=f(x).{u_{tt}} - \Delta u - \Delta {u_t} - \Delta {u_{tt}} + g(x,u) = f(x). Chen and Wang [19] proved the existence of global attractor for the problem (1.2). Lately, Xie and Zhong in [8] studied the existence of global attractor of solution for the problem (1.1) with f = 0. Also, there are some authors studied the existence and nonexistence, asymptotic behavior of global solution for (1.2) (see [2, 3, 4, 5, 6, 7] for more details ). Nakao and Yang in [9] showed the global attractor of the Kirchhoff type wave equation.

In this paper, we improve our result by adopting and modifying the method of [19], we studied more general form of the equation.

This paper is organized as follows: In section 2, we give some assumptions and state the main results. In section 3, we prove the global existence of solution using the Faedo-Galerkin method. Also, we write some important estimates for the solution. In section 4, the existence of the global attractor is proved. In Section 5, the proof of decay property for solution is showed.

Preliminaries and main results

We write the Sobolev space Hk (Ω) = Wk,2 (Ω), H0k(Ω)=W0k,2(Ω)H_0^k(\Omega ) = W_0^{k,2}(\Omega ) . Furthermore, we show by (.,.) the inner product of L2 (Ω), by ‖.‖p the norm of Lp (Ω), p ≥ 1 and by ‖.‖E the norm of any other Banach space E. As usual, we give u(t) instead of u(x,t), and u (t) for ut (t) and so on.

We write the following assumptions on f and g.

(A1) Assume f (x) ∈ L2 (Ω) and show F = ‖ f ‖2;

(A2) Suppose g(x,u) ∈ C1× R1) and ∃k1,k2> 0, h1 (x) ∈ L2 (Ω), h2 (x) ∈ L2 (Ω) ∩ Ln/2 (Ω) such that g(x,u)u+h1(x)|u|k1(G(x,u)+h1(x)|u|)0,(x,u)Ω×R1g(x,u)u + {h_1}(x)|u| \ge {k_1}(G(x,u) + {h_1}(x)|u|) \ge 0,(x,u) \in \Omega \times {R^1} and the growth condition in u|g(x,u)|k2(|u|α+h2(x)),|gu(x,u)|k2(|u|α1+h2(x)),(x,u)Ω×R1|g(x,u)| \le {k_2}(|u{|^{\rm{\alpha }}} + {h_2}(x)),|{g_u}(x,u)| \le {k_2}\left( {|u{|^{{\rm{\alpha }} - 1}} + {h_2}(x)} \right),(x,u) \in \Omega \times {R^1} with α ≥ 1, (n = 1,2), and 1αn+2n+21 \le {\rm{\alpha }} \le \frac{{n + 2}}{{n + 2}} , (n ≥ 3), G(x,u)=0ug(x,s)dsG(x,u) = \int_0^u {g(x,s)ds} .

Later, we assume H1 = ‖h12, H2 = max {‖h22, ‖h2n/2}.

Clearly, the function g(x,u) = a(x)|u|α−1u − b(x)|u|β−1u(1 ≤ β < α) supplies (2.1) and (2.2) for some a(x), b(x).

Next, we show the definition and lemmas relating to the global attractor, (see [9, 11, 12]).

Definition 1

Suppose that E is Banach space and {S (t)}t≥0a semigroup on E. A set AE is said a (E,E)−global attractor if and only iff

A is never changing (invariant), namely, S (t)A = A for whole t ≥ 0;

A is compact in E;

A is a bounded set in E and absorbs all bounded subset B in E relating with E topology, that is, for whichever bounded subset B ⊂ E, distE(S(t)B,A*)=supinfyBxA*||S(t)yx||E0ast.dis{t_E}(S(t)B,A*) = \mathop {\sup \inf }\limits_{y \in {B^{x \in A*}}} ||S(t)y - x|{|_E} \to 0\,as\,t \to \infty .

Lemma 2

Assume E is Banach space and {S (t)}t ≥0is a semigroup of continuous operators on E. Then, there exists (E,E)−global attractor A if the following conditions are supplied:

There exists a bounded absorbing set B0in E, that is, for whichever bounded subset B ⊂ E, there is a T = T (B) such that S (t)B ⊂ B0for any t ≥ T.

{S (t)}t≥0as asymptotically compact in E, that is, for any bounded sequence {yn} in E and tnas n → ∞, {S(tn)yn}n=1\left\{ {S\left( {t_n } \right)y_n } \right\}_{n = 1}^\inftyhas a convergent subsequence relating to E topology.

We show the basic results now.

Theorem 3

Suppose (A1)–(A2) satisfy and (u0,u1) ∈ X. Then, the problem (1.1) admits a unique weak solution u(t) in the classC1([0,);H0mC([0,);H2mH0m)W2,([0,);H0mW1,(([0,);H2m){C^1}([0,\infty );H_0^m \cap C([0,\infty );{H^{2m}} \cap H_0^m) \cap {W^{2,\infty }}([0,\infty );H_0^m \cap {W^{1,\infty }}(([0,\infty );{H^{2m}})holds.P12u(t)22+P12ut(t)22C1eλ1t+C2,t0\left\| {{P^{\frac{1}{2}}}u(t)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}{u_t}(t)} \right\|_2^2 \le {C_1}{e^{ - {\lambda _1}t}} + {C_2},t \ge 0utt(t)22+P12ut(t)22+P12utt(t)22C3eλ2t+C4,t0\left\| {{u_{tt}}(t)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}{u_t}(t)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}{u_{tt}}(t)} \right\|_2^2 \le {C_3}{e^{ - {\lambda _2}t}} + {C_4},t \ge 0andP12ut(t)22+Pu(t)22+Put(t)22C5eλ3t+C4,t0\left\| {{P^{\frac{1}{2}}}{u_t}(t)} \right\|_2^2 + \left\| {Pu(t)} \right\|_2^2 + \left\| {P{u_t}(t)} \right\|_2^2 \le {C_5}{e^{ - {\lambda _3}t}} + {C_4},t \ge 0with some λ1, λ2,λ3> 0. In this theoremC1=C1(P12u02,P12u12){C_1} = {C_1}\left( {{{\left\| {{P^{\frac{1}{2}}}{u_0}} \right\|}_2},{{\left\| {{P^{\frac{1}{2}}}{u_1}} \right\|}_2}} \right) , C2 = C2(F,H1), C3=C3(P12u02,P12u12,F,H1,H2){C_3} = {C_3}\left( {{{\left\| {{P^{\frac{1}{2}}}{u_0}} \right\|}_2},{{\left\| {{P^{\frac{1}{2}}}{u_1}} \right\|}_2},F,{H_1},{H_2}} \right), C4 = C4 (F,H1,H2),C5 = C5 (‖Pu02 ,‖Pu12 ,F,H1,H2).

Show the solution in Theorem 1 by S (t)(u0,u1) = (u(t),ut (t)). We are now in a position to prove some continuity of S (t) relating to the initial data (u0,u1), which will be needed for the proof of the existence of global attractor.

Theorem 4

Suppose whole conditions in Theorem 3. Assume S (t)(u0k,u1k) and S (t)(u0,u1) are the solutions of the problem (1.1) with the initial data (u0k,u1k) and (u0,u1). If (u0k,u1k) (u0,u1) in X as k → ∞, then S (t)(u0k,u1k) → S (t)(u0,u1) in X as k → ∞.

Theorem 4 denotes that the semigroup S (t) : X → X is continuous on X.

Theorem 5

Assume every assumptions in Theorem 3 be provided. Then, the semigroup {S (t)}t≥0related with the solution of the problem (1.1) accepts a (X,X)−global attractor A.

For the decay property of solution u(t) for the problem (1.1), we get

Theorem 6

Suppose u is a weak solution in Theorem 3 with f = 0 and g(x,u) = g(u). Besides, suppose 0 2G(u) ≤ ug(u). Then, for whichever q > 0, there isC1=C1(P12u02,P12u12){C_1} = {C_1}\left( {{{\left\| {{P^{\frac{1}{2}}}{u_0}} \right\|}_2},{{\left\| {{P^{\frac{1}{2}}}{u_1}} \right\|}_2}} \right)such thatE(t)=12(u(t)22+P12u(t)22+P12ut(t)22)+ΩG(u(t))dxC1(1+t)1/q.E(t) = \frac{1}{2}\left( {\left\| {u(t)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}u(t)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}{u_t}(t)} \right\|_2^2} \right) + \int_\Omega {G(} u(t))dx \le {C_1}{(1 + t)^{ - 1/q}}.

The Proof of Theorem 3

In this section, we suppose that all assumptions in Theorem 3 are supplied. Firstly, we establish the global existence of a solution to problem (1.1) with Fadeo-Galerkin method as in [16, 17].

Assume ωj (x) (j = 1,2,...) is the complete set of properly normalized eigenfunctions for the operator (Δ)m in H0m(Ω)H_0^m(\Omega ) . Then, the family 1,ω2...,ωk,...} holds an orthogonal basis for both H0m(Ω)H_0^m(\Omega ) and L2 (Ω), see [16, 17]. For each positive integer k, show Vk = span{ω1,ω2...,ωk,...}. We search for an approximation solution uk (t) to the problem (1.1) in the form uk(t)=j=1kdjk(t)ωj{u_k}(t) = \sum\limits_{j = 1}^k {{d_{jk}}(t){\omega _j}} where djk (t) are the solution of the nonlinear ordinary differential equation (ODE) system in the variant t: (uk,ωj)(Puk,ωj)(Puk',ωj)(Puk,ωj)+(g,ωj)=(f,ωj),j=1,2,,k,(u_k^{\prime\prime},{\omega _j}) - (P{u_k},{\omega _j}) - (Pu_k^\prime,{\omega _j}) - (Pu_k^{\prime\prime},{\omega _j}) + (g,{\omega _j}) = (f,{\omega _j}),j = 1,2, \ldots ,k, with the initial conditions djk(0)=(u0k,ωj),djk'(0)=(u1k,ωj){d_{jk}}(0) = ({u_{0k}},{\omega _j}),d_{jk}^\prime(0) = ({u_{1k}},{\omega _j}) where u0k and u1k are chosen in Vk so that u0ku0,u1ku1inH2m(Ω)H0m(Ω)ask.{u_{0k}} \to {u_0},{u_{1k}} \to {u_1}\,{\rm{in}}\,{H^{2m}}(\Omega ) \cap H_0^m(\Omega )\,{\rm{as}}\,k\, \to \infty . Here (.,.) shows the inner product in L2 (Ω). Then, Sobolev imbedding theorem means that ∃c0> 0, such that uk(0)H0m2c0P12u022,uk'(0)H0m2c0P12u122k=1,2,,\left\| {{u_k}(0)} \right\|_{H_0^m}^2 \le {c_0}\left\| {{P^{\frac{1}{2}}}{u_0}} \right\|_2^2,\left\| {u_k^\prime(0)} \right\|_{H_0^m}^2 \le {c_0}\left\| {{P^{\frac{1}{2}}}{u_1}} \right\|_2^2\forall k = 1,2, \ldots , and (3.1) shows that for any v ∈ Vk, (uk,v)(Puk,v)(Puk',v)(Puk,v)+(g,v)=(f,v),vVk.\left( {u_k^{\prime\prime},v} \right) - \left( {P{u_k},v} \right) - \left( {Pu_k^\prime,v} \right) - \left( {Pu_k^{\prime\prime},v} \right) + (g,v) = (f,v),\forall v \in {V_k}. We know, the system (3.1) and (3.2) accept a unique solution uk (t) on the interval [0,T ] for any T > 0. Such a solution can be expanded to the overall interval [0,∞). We show by Ci (i = 1,2,...) the constants that are independent of k and t ≥ 0, by C0 the constant depending on k1, k2 in (A2) and Sobolev imbedding constant c0 in (3.4). These constants may be different from line to line.

Multiplying (3.1) by djk (t) and summing the resulting equations over j, we obtain E1'(t)+P12uk'(t)22=0,t0E_1^\prime(t) + \left\| {{P^{\frac{1}{2}}}u_k^\prime(t)} \right\|_2^2 = 0,\forall t \ge 0 where E1(t)=12(uk'(t)22+P12uk(t)22+P12uk'(t)22)+ΩG(x,uk(t))dxΩf(x)uk(t)dx.{E_1}(t) = \frac{1}{2}\left( {\left\| {u_k^\prime(t)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}{u_k}(t)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}u_k^\prime(t)} \right\|_2^2} \right) + \int_\Omega {G(x,{u_k}(t))dx - } \int_\Omega {f(x){u_k}(t)dx.} Also, multiplying (3.1) by djk (t), we get E21(t)+P12uk(t)22+Ωg(x,uk)uk(t)dx=uk'(t)22+P12uk'(t)22+Ωf(x)uk(t)dxE_2^1(t) + \left\| {{P^{\frac{1}{2}}}{u_k}(t)} \right\|_2^2 + \int_\Omega {g(x,{u_k}){u_k}(t)dx = \left\| {u_k^\prime(t)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}u_k^\prime(t)} \right\|_2^2 + } \int_\Omega {f(x){u_k}(t)dx} where E2(t)=12P12uk(t)22+Ωuk(t)uk1(t)dx+ΩP12uk(t)P12uk'(t)dx.{E_2}(t) = \frac{1}{2}\left\| {{P^{\frac{1}{2}}}{u_k}(t)} \right\|_2^2 + \int_\Omega {{u_k}(t)u_k^1(t)dx + } \int_\Omega {{P^{\frac{1}{2}}}{u_k}(t){P^{\frac{1}{2}}}u_k^\prime(t)dx.} If we take sufficient large k1> 0 and use the assumption (A2), we get ψk'(t)+λ1ψk(t)C0(F2+H12m),ψk(t)=k1E1(t)+E2(t)\psi _k^\prime(t) + {\lambda _1}{\psi _k}(t) \le {C_0}({F^2} + H_1^{2m}),{\psi _k}(t) = {k_1}{E_1}(t) + {E_2}(t) with some positive λ 1, relating to the indicated constants in (A2).

We note that ψk(t)c0(k1+c0)(P12uk'(t)22+P12uk(t)22)+k12(F2+H12m)+k1Ω(G+h1|uk(t)|)dx{\psi _k}(t) \le {c_0}({k_1} + {c_0})\left( {\left\| {{P^{\frac{1}{2}}}u_k^\prime(t)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}{u_k}(t)} \right\|_2^2} \right) + k_1^2\left( {{F^2} + H_1^{2m}} \right) + {k_1}\int_\Omega {\left( {G + {h_1}\left| {{u_k}(t)} \right|} \right)dx} and 2ψk(t)(k11)(uk'(t)22+P12uk1(t)22)+(k15c0)P12uk(t)22+k1Ω(G+h1|uk(t)|)dxk12(F2+H12m)2{\psi _k}(t) \ge ({k_1} - 1)\left( {\left\| {u_k^\prime(t)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}u_k^1(t)} \right\|_2^2} \right) + \left( {{k_1} - 5{c_0}} \right)\left\| {{P^{\frac{1}{2}}}{u_k}(t)} \right\|_2^2 + {k_1}\int_\Omega {\left( {G + {h_1}\left| {{u_k}(t)} \right|} \right)dx} - k_1^2\left( {{F^2} + H_1^{2m}} \right) with k1 max{3,2 + 5c0}.

The application of Gronwall lemma to (3.10) holds P12uk(t)22+P12uk'(t)22+ΩG(x,uk(t))+h1(x)|uk(t)|)dxC1eλ1t+C2,t0\left\| {{P^{\frac{1}{2}}}{u_k}(t)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}u_k^\prime(t)} \right\|_2^2 + \int_\Omega {G(x,{u_k}(t)) + {h_1}(x)\left| {{u_k}(t)} \right|)dx \le } {C_1}{e^{ - {\lambda _1}t}} + {C_2},t \ge 0 which shows P12uk(t)22+P12uk'(t)22C1eλ1t+C2,t0\left\| {{P^{\frac{1}{2}}}{u_k}(t)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}u_k^\prime(t)} \right\|_2^2 \le {C_1}{e^{ - {\lambda _1}t}} + {C_2},t \ge 0 Where C1=C1(P12u02,P12u12){C_1} = {C_1}\left( {{{\left\| {{P^{\frac{1}{2}}}{u_0}} \right\|}_2},{{\left\| {{P^{\frac{1}{2}}}{u_1}} \right\|}_2}} \right) , C2 = C2 (F,H1).

Also, we differentiate (3.1) with respect to t and get (uk',ωj)(Puk',ωj)(Puk,ωj)(Puk',ωj)+(guuk',ωj)=0,j=1,2,,k.\left( {u_k^{\prime\prime\prime},{\omega _j}} \right) - \left( {Pu_k^\prime,{\omega _j}} \right) - \left( {Pu_k^{\prime\prime},{\omega _j}} \right) - \left( {Pu_k^{\prime\prime\prime},{\omega _j}} \right) + \left( {{g_u}u_k^\prime,{\omega _j}} \right) = 0,j = 1,2, \ldots ,k. Multiplying (3.14) by djk(t)d_{jk}^{\prime\prime}(t) and summing the resulting equations over j, we obtain E3'(t)+P12uk(t)22+Ωguuk'ukdx=0E_3^\prime(t) + \left\| {{P^{\frac{1}{2}}}u_k^{\prime\prime}(t)} \right\|_2^2 + \int_\Omega {{g_u}u_k^\primeu_k^{\prime\prime}dx = 0} with E3(t)=12(uk(t)22+P12uk'(t)22+P12uk(t)22)C0(P12uk(t)22+P12uk'(t)22)2,t0{E_3}(t) = \frac{1}{2}\left( {\left\| {u_k^{\prime\prime}(t)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}u_k^\prime(t)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}u_k^{\prime\prime}(t)} \right\|_2^2} \right) \le {C_0}{\left( {\left\| {{P^{\frac{1}{2}}}u_k^{\prime\prime}(t)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}u_k^\prime(t)} \right\|_2^2} \right)_2},t \ge 0 in which the Sobolev embedding theorem has been used.

Furthermore, the growth condition (2.2) and the Hölder inequality mean that Ω|guuk'uk|dxk2Ω(|h2||uk'|+|uk|α1|uk'||uk|)dxC0(h2n/2+P12um2(α1))P12uk'2P12uk2.\int_\Omega {\left| {{g_u}u_k^\primeu_k^{\prime\prime}} \right|dx \le } {k_2}\int_\Omega {\left( {\left| {{h_2}} \right|\left| {u_k^\prime} \right| + {{\left| {{u_k}} \right|}^{\alpha - 1}}\left| {u_k^\prime} \right|\left| {u_k^{\prime\prime}} \right|} \right)dx \le {C_0}} \left( {{{\left\| {{h_2}} \right\|}_{n/2}} + \left\| {{P^{\frac{1}{2}}}{u_m}} \right\|_2^{({\rm{\alpha }} - 1)}} \right){\left\| {{P^{\frac{1}{2}}}u_k^\prime} \right\|_2}{\left\| {{P^{\frac{1}{2}}}u_k^{\prime\prime}} \right\|_2}. Therefore, we get Ω|guuk'uk|dx12P12uk(t)22+C0P12uk'(t)22(P12uk(t)22(α1)+H22m)\int_\Omega {\left| {{g_u}u_k^\primeu_k^{\prime\prime}} \right|dx \le } \frac{1}{2}\left\| {{P^{\frac{1}{2}}}u_k^{\prime\prime}(t)} \right\|_2^2 + {C_0}\left\| {{P^{\frac{1}{2}}}u_k^\prime(t)} \right\|_2^2\left( {\left\| {{P^{\frac{1}{2}}}{u_k}(t)} \right\|_2^{2({\rm{\alpha }} - 1)} + H_2^{2m}} \right) and E3'(t)+12P12uk(t)22C0P12uk'(t)22(P12uk(t)22(α1)+H22m).E_3^\prime(t) + \frac{1}{2}\left\| {{P^{\frac{1}{2}}}u_k^{\prime\prime}(t)} \right\|_2^2 \le {C_0}\left\| {{P^{\frac{1}{2}}}u_k^\prime(t)} \right\|_2^2\left( {\left\| {{P^{\frac{1}{2}}}{u_k}(t)} \right\|_2^{2({\rm{\alpha }} - 1)} + H_2^{2m}} \right). Then, the applications of the estimates (3.13) and (3.15)–(3.18) give that ∃λ 1 ≥ λ 2 > 0, depending on C0, such that E3'(t)+λ2E3(t)C0P12uk'(t)22(1+P12uk(t)22(α1)+H22m)C3eλ1t+C4.E_3^\prime(t) + {\lambda _2}{E_3}(t) \le {C_0}\left\| {{P^{\frac{1}{2}}}u_k^\prime(t)} \right\|_2^2\left( {1 + \left\| {{P^{\frac{1}{2}}}{u_k}(t)} \right\|_2^{2({\rm{\alpha }} - 1)} + H_2^{2m}} \right) \le {C_3}{e^{ - {\lambda _1}t}} + {C_4}. Here, assume C3=C3(P12u02,P12u12,F,H1,H2){C_3} = {C_3}\left( {{{\left\| {{P^{\frac{1}{2}}}{u_0}} \right\|}_2},{{\left\| {{P^{\frac{1}{2}}}{u_1}} \right\|}_2},F,{H_1},{H_2}} \right) , C4 = C4 (,F,H1,H2). Then (3.19) means that E2(t)E3(0)eλ2t+C3eλ2t+λ21c4,t0.{E_2}(t) \le {E_3}(0){e^{ - {\lambda _2}t}} + {C_3}{e^{ - {\lambda _2}t}} + \lambda _2^{ - 1}{c_4},t \ge 0. We show that E3 (0) is uniformly bounded for k under the conditions in Theorem 3 now. It follows by (3.1) that (uk(t)Puk(t)Puk'(t)Puk(t),uk(t))=(f,uk'(t))(g,uk(t)).\left( {u_k^{\prime\prime}(t) - P{u_k}(t) - Pu_k^\prime(t) - Pu_k^{\prime\prime}(t),u_k^{\prime\prime}(t)} \right) = \left( {f,u_k^\prime(t)} \right) - \left( {g,u_k^{\prime\prime}(t)} \right). Especially, suppose t = 0, we get uk(0)22+P12uk(0)22+ΩP12uk(0).(P12uk(0)+P12uk'(0))dx=Ωf(x)uk(0)dxΩ(g,uk(0))uk(0)dx.\begin{array}{*{20}{l}} {\left\| {u_k^{\prime\prime}(0)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}u_k^{\prime\prime}(0)} \right\|_2^2 + \int_\Omega {{P^{\frac{1}{2}}}u_k^{\prime\prime}(0).\left( {{P^{\frac{1}{2}}}{u_k}(0) + {P^{\frac{1}{2}}}u_k^\prime(0)} \right)} dx}\\ { = \int_\Omega {f(x)u_k^{\prime\prime}(0)dx - \int_\Omega {\left( {g,{u_k}(0)} \right)} u_k^{\prime\prime}(0)dx.} } \end{array} By Young inequality with ɛ, Ω|P12uk(0).P12uk(0)|dxεP12uk(0)22+CεP12uk(0)22,Ω|P12uk(0).P12uk'(0)|dxεP12uk(0)22+CεP12uk'(0)22,Ω|g(x,uk(0))uk(0)dx|uk(0)2nn2gμ1εP12uk(0)22+Cεgμ12,\begin{array}{*{20}{c}} {\int_\Omega {\left| {{P^{\frac{1}{2}}}u_k^{\prime\prime}(0).{P^{\frac{1}{2}}}{u_k}(0)} \right|dx \le \varepsilon \left\| {{P^{\frac{1}{2}}}u_k^{\prime\prime}(0)} \right\|_2^2 + {C_\varepsilon }\left\| {{P^{\frac{1}{2}}}{u_k}(0)} \right\|_2^2,} }\\ {\int_\Omega {\left| {{P^{\frac{1}{2}}}u_k^{\prime\prime}(0).{P^{\frac{1}{2}}}u_k^\prime(0)} \right|dx \le \varepsilon \left\| {{P^{\frac{1}{2}}}u_k^{\prime\prime}(0)} \right\|_2^2 + {C_\varepsilon }\left\| {{P^{\frac{1}{2}}}u_k^\prime(0)} \right\|_2^2,} }\\ {\int_\Omega {\left| {g\left( {x,{u_k}(0)} \right)u_k^{\prime\prime}(0)dx} \right| \le {{\left\| {u_k^{\prime\prime}(0)} \right\|}_{\frac{{2n}}{{n - 2}}}}{{\left\| g \right\|}_{{\mu _1}}} \le \varepsilon \left\| {{P^{\frac{1}{2}}}u_k^{\prime\prime}(0)} \right\|_2^2 + {C_\varepsilon }\left\| g \right\|_{{\mu _1}}^2,} } \end{array} and Ω|f(x)uk(0)|dxεP12uk(0)22+Cεf22\int_\Omega {\left| {f(x)u_k^{\prime\prime}(0)} \right|dx \le } \varepsilon \left\| {{P^{\frac{1}{2}}}u_k^{\prime\prime}(0)} \right\|_2^2 + {C_\varepsilon }\left\| f \right\|_2^2 with μ1 = 2n/(n + 2). Since μ1α = 2nα/(n + 2) 2n/(n − 2), we obtain by (2.2) that Ω|g|μ1dxC0Ω(|uk(0)|μ1α+|h2|μ1)dxC0(P12u02μ1α+h22μ1).\int_\Omega {{{\left| g \right|}^{{\mu _1}}}dx \le {C_0}} \int_\Omega {\left( {{{\left| {{u_k}(0)} \right|}^{{\mu _1}{\rm{\alpha }}}} + {{\left| {{h_2}} \right|}^{{\mu _1}}}} \right)dx \le {C_0}\left( {\left\| {{P^{\frac{1}{2}}}{u_0}} \right\|_2^{{\mu _1}{\rm{\alpha }}} + \left\| {{h_2}} \right\|_2^{{\mu _1}}} \right).} Suppose 0 < ɛ ≤ 1/6. Then, from (3.22) to (3.24) that E3(0)P12uk(0)22+uk(0)22+P12uk'(0)22C0(P12uk'(0)22+P12uk(0)22+F2+gμ12)C0(P12u122+P12u022+F2+P12u022α+h222)C3.\begin{array}{*{20}{l}} {{E_3}(0)}&{ \le \left\| {{P^{\frac{1}{2}}}u_k^{\prime\prime}(0)} \right\|_2^2 + \left\| {u_k^{\prime\prime}(0)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}u_k^\prime(0)} \right\|_2^2}\\ {}&{ \le {C_0}\left( {\left\| {{P^{\frac{1}{2}}}u_k^\prime(0)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}{u_k}(0)} \right\|_2^2 + {F^2} + \left\| g \right\|_{{\mu _1}}^2} \right)}\\ {}&{ \le {C_0}\left( {\left\| {{P^{\frac{1}{2}}}{u_1}} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}{u_0}} \right\|_2^2 + {F^2} + \left\| {{P^{\frac{1}{2}}}{u_0}} \right\|_2^{2{\rm{\alpha }}} + \left\| {{h_2}} \right\|_2^2} \right) \equiv {C_3}.} \end{array} Therefore, the inequality (3.20) shows P12uk(t)22+P12uk'(t)22+P12uk(t)22C3eλ2t+λ21C4,t0\left\| {{P^{\frac{1}{2}}}u_k^{\prime\prime}(t)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}u_k^\prime(t)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}u_k^{\prime\prime}(t)} \right\|_2^2 \le {C_3}{e^{ - {\lambda _2}t}} + \lambda _2^{ - 1}{C_4},t \ge 0 and the estimates (3.13) and (3.26) give that {{uk(t)}isboundedinL([0,);H0m(Ω)),{uk'(t)}isboundedinL([0,);H0m(Ω)),{uk(t)}isboundedinL([0,);H0m(Ω)).\left\{ {\begin{array}{*{20}{l}} {\left\{ {{u_k}(t)} \right\}{\rm{is}}\,{\rm{bounded}}\,{\rm{in}}\,{L^\infty }([0,\infty );H_0^m(\Omega )),}\\ {\left\{ {u_k^\prime(t)} \right\}{\rm{is}}\,{\rm{bounded}}\,{\rm{in}}\,{L^\infty }([0,\infty );H_0^m(\Omega )),}\\ {\left\{ {u_k^{\prime\prime}(t)} \right\}{\rm{is}}\,{\rm{bounded}}\,{\rm{in}}\,{L^\infty }([0,\infty );H_0^m(\Omega )).} \end{array}} \right. So, there exists a subsequences in {uk} (still showed by {uk}) such that {ukuweaklystarinL([0,);H0m(Ω)),uk'u'weaklystarinL([0,);L2(Ω)),ukuweaklystarinL2([0,);H0m(Ω)),.\left\{ {\begin{array}{*{20}{l}} {{u_k} \to u\,{\rm{weakly}}\,{\rm{star}}\,{\rm{in}}\,{L^\infty }([0,\infty );H_0^m(\Omega )),}\\ {u_k^\prime \to {u^\prime}\,{\rm{weakly}}\,{\rm{star}}\,{\rm{in}}\,{L^\infty }([0,\infty );{L^2}(\Omega )),}\\ {u_k^{\prime\prime} \to {u^{\prime\prime}}\,{\rm{weakly}}\,{\rm{star}}\,{\rm{in}}\,{L^2}([0,\infty );H_0^m(\Omega )),.} \end{array}} \right. From applying the fact that L ([0,∞); H0m(Ω))L2(|0,)\left. {H_0^m\left( \Omega \right)} \right) \hookrightarrow {L^2}\left( {|0,\infty } \right)\ ; H0m(Ω))\left. {H_0^m \left( \Omega \right)} \right) ) and the Lions-Aubin compactness Lemma in [20], we obtain from (3.27) and (3.28) that uku,uk'stronglyinL2([0,);L2(Ω)){u_k} \to u,u_k^\prime \to \user1{strongly}\,\user1{in}\,{L^2}\left( {[0,\infty );{L^2}\left( \Omega \right)} \right) and then uk→ u a.e in Ω× [0,∞).

Using the growth condition (2.2), for any T > 0, the integral 0TΩ|g(x,uk)(x,t)|α+1αdxdt\int_0^T {\int_\Omega {{{\left| {g\left( {x,{u_k}} \right)\left( {x,t} \right)} \right|}^{\frac{{\alpha + 1}}{\alpha }}}dxdt} } is bounded. Accordingly, by Lemma 2 in Chap. 1 [17], we conclude g(x,uk)g(x,u)weaklyinLα+1α([0,T];Lα+1α(Ω))g\left( {x,{u_k}} \right) \to g\left( {x,u} \right){\rm{weakly}}\,{\rm{in}}\,{L^{\frac{{\alpha + 1}}{\alpha }}}\left( {\left[ {0,T} \right];{L^{\frac{{\alpha + 1}}{\alpha }}}\left( \Omega \right)} \right) with these convergences, by using the limit in the approximate equation (3.5), we get (u(t),v)(Pu,v)(Pu,v)(Pu,v)+(g(x,u),v)=f(f,v),vH0m(Ω),\left( {u\prime\prime\left( t \right),v} \right) - \left( {Pu,v} \right) - \left( {Pu\prime,v} \right) - \left( {Pu\prime\prime,v} \right) + \left( {g\left( {x,u} \right),v} \right) = f\left( {f,v} \right),\forall v \in H_0^m\left( \Omega \right), So, u(t) is a weak solution of (1.1) and supplies (2.5) and (2.6), and the proof of existence for the solution u(t) of (1.1) is completed.

We derive the estimates for ‖Pu(t)2 and ‖Put (t)2 now. Also, we write u instead of uk for convenience and view the estimates for u as a limit of uk. Supposing v = −Pu in (3.31), we obtain E4'(t)+Pu(t)22P12ut(t)22+Put(t)22+C0(F2+g22)E_4^\prime\left( t \right) + \left\| {Pu\left( t \right)} \right\|_2^2 \le \left\| {{P^{\frac{1}{2}}}{u_t}\left( t \right)} \right\|_2^2 + \left\| {P{u_t}\left( t \right)} \right\|_2^2 + {C_0}\left( {{F^2} + \left\| g \right\|_2^2} \right) with some C0> 0 and E4(t)=12Pu(t)22+ΩP12ut(t)P12u(t)dx+ΩPut(t)Pu(t)dx.{E_4}\left( t \right) = \frac{1}{2}\left\| {Pu\left( t \right)} \right\|_2^2 + \int_\Omega {{P^{\frac{1}{2}}}{u_t}} \left( t \right){P^{\frac{1}{2}}}u\left( t \right)dx + \int_\Omega {P{u_t}} \left( t \right)Pu\left( t \right)dx. Also, assuming v = −Put in (3.31), we get ΩPut(utt+Pu+Putt)dx+Put22=ΩgP12utdxΩfPutdx12Put22+C0(F2+g22).\begin{array}{*{20}{l}} {\int_\Omega {P{u_t}\left( { - {u_{tt}} + Pu + P{u_{tt}}} \right)dx} + \left\| {P{u_t}} \right\|_2^2}&{ = \int_\Omega {g{P^{\frac{1}{2}}}{u_t}dx - } \int_\Omega {fP{u_t}dx} }\\ {}&{ \le \frac{1}{2}\left\| {P{u_t}} \right\|_2^2 + {C_0}\left( {{F^2} + \left\| g \right\|_2^2} \right).} \end{array} This means that E5'+12Put(t)22C0(F2+g22)E_5^\prime + \frac{1}{2}\left\| {P{u_t}\left( t \right)} \right\|_2^2 \le {C_0}\left( {{F^2} + \left\| g \right\|_2^2} \right) with E5(t)=12(P12ut(t)22+Put(t)22+Pu(t)22).{E_5}\left( t \right) = \frac{1}{2}\left( {\left\| {{P^{\frac{1}{2}}}{u_t}\left( t \right)} \right\|_2^2 + \left\| {P{u_t}\left( t \right)} \right\|_2^2 + \left\| {Pu\left( t \right)} \right\|_2^2} \right). We note that u2α2αC0P12u22αθ+Pu22α(1θ)ηPu22+CηP12u22β\left\| u \right\|_{2\alpha }^{2\alpha } \le {C_0}\left\| {{P^{\frac{1}{2}}}u} \right\|_2^{2\alpha \theta } + \left\| {Pu} \right\|_2^{2\alpha \left( {1 - \theta } \right)} \le \eta \left\| {Pu} \right\|_2^2 + {C_\eta }\left\| {{P^{\frac{1}{2}}}u} \right\|_2^{2\beta } with small η > 0 and 2αθ = (n − 2)α − n < 2, β = α (1 − θ )/(1 − αθ ) > 0. Then, (3.37) shows g22C0(u2α2α+H22m)ηPu22CηP12u22β+C0H22m.\left\| g \right\|_2^2 \le {C_0}\left( {\left\| u \right\|_{2\alpha }^{2\alpha } + H_2^{2m}} \right) \le \eta \left\| {Pu} \right\|_2^2{C_\eta }\left\| {{P^{\frac{1}{2}}}u} \right\|_2^{2\beta } + {C_0}H_2^{2m}. Then, by (2.5), (3.35) and (3.38) that E5'(t)+12Pu(t)22Pu(t)22+CηP12u(t)22β+C0(F2+H22m)C1eλ1βt+ηPu(t)22+C2.\begin{array}{*{20}{l}} {E_5^\prime\left( t \right) + \frac{1}{2}\left\| {Pu\left( t \right)} \right\|_2^2}&{ \le \left\| {Pu\left( t \right)} \right\|_2^2 + {C_\eta }\left\| {{P^{\frac{1}{2}}}u\left( t \right)} \right\|_2^{2\beta } + {C_0}\left( {{F^2} + H_2^{2m}} \right)}\\ {}&{ \le {C_1}{e^{ - {\lambda _1}\beta t}} + \eta \left\| {Pu\left( t \right)} \right\|_2^2 + {C_2}.} \end{array} Assume φ (t) = k1E5 (t) + E4 (t). We get from (3.32) and (3.39) that ϕ(t)+k112Put(t)22+(1(1+k1/2)η)Pu(t)22C1eλ1βt+C2.{\phi ^\prime}\left( t \right) + \frac{{{k_1} - 1}}{2}\left\| {P{u_t}\left( t \right)} \right\|_2^2 + \left( {1 - \left( {1 + {k_1}/2} \right)\eta } \right)\left\| {Pu\left( t \right)} \right\|_2^2 \le {C_1}{e^{ - {\lambda _1}\beta t}} + {C_2}. Suppose k1 3 and η is small that 1 − η (1 + k1/2) 4/5. Then, (3.40) shows ϕ(t)+Put22+12Pu(t)22C1eλ1βt+C2.{\phi ^\prime}\left( t \right) + \left\| {P{u_t}} \right\|_2^2 + \frac{1}{2}\left\| {Pu\left( t \right)} \right\|_2^2 \le {C_1}{e^{ - {\lambda _1}\beta t}} + {C_2}. We note that E4(t)35Pu22+3Put(t)22+12(P12u22+P12ut22){E_4}\left( t \right) \le \frac{3}{5}\left\| {Pu} \right\|_2^2 + 3\left\| {P{u_t}\left( t \right)} \right\|_2^2 + \frac{1}{2}\left( {\left\| {{P^{\frac{1}{2}}}u} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}{u_t}} \right\|_2^2} \right) and ϕ(t)(35+k12)Pu22+(3+k12)Put22+12(P12u22+P12ut22)C0(Pu(t)22+Put(t)22+C1eλ1βt+C2).\begin{array}{*{20}{l}} {\varphi \left( t \right)}&{ \le \left( {\frac{3}{5} + \frac{{{k_1}}}{2}} \right)\left\| {Pu} \right\|_2^2 + \left( {3 + \frac{{{k_1}}}{2}} \right)\left\| {P{u_t}} \right\|_2^2 + \frac{1}{2}\left( {\left\| {{P^{\frac{1}{2}}}u} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}{u_t}} \right\|_2^2} \right)}\\ {}&{ \le {C_0}\left( {\left\| {Pu\left( t \right)} \right\|_2^2 + \left\| {P{u_t}\left( t \right)} \right\|_2^2 + {C_1}{e^{ - {\lambda _1}\beta t}} + {C_2}} \right).} \end{array} Also (3.41) and (3.43) give that ∃λ 1β ≥ λ 3 > 0, depending on C0, such that ϕ(t)+λ3ϕ(t)C1eλ1βt+C2,t0.\varphi \prime\left( t \right) + {\lambda _3}\varphi \left( t \right) \le {C_1}{e^{ - {\lambda _1}\beta t}} + {C_2},t \ge 0. So, ϕ(t)ϕ(0)eλ3t+C1eλ3t+C2λ31,t0.\varphi \left( t \right) \le \varphi \left( 0 \right){e^{ - {\lambda _3}t}} + {C_1}{e^{ - {\lambda _3}t}} + {C_2}{\lambda _3}^{ - 1},t \ge 0. Otherwise, we get ϕ(t)=k1E4(t)+E3(t)k12(P12ut22+Put22+Pu22)12(P12ut22+Put22+P12u22)k112P12ut22+(k121)Put22+k1c02Pu22P12ut22+Put22+Pu22,\begin{array}{*{20}{l}} {\varphi \left( t \right)}&{ = {k_1}{E_4}\left( t \right) + {E_3}\left( t \right) \ge \frac{{{k_1}}}{2}\left( {\left\| {{P^{\frac{1}{2}}}{u_t}} \right\|_2^2 + \left\| {P{u_t}} \right\|_2^2 + \left\| {Pu} \right\|_2^2} \right)}\\ {}&{\,\,\,\,\, - \frac{1}{2}\left( {\left\| {{P^{\frac{1}{2}}}{u_t}} \right\|_2^2 + \left\| {P{u_t}} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}u} \right\|_2^2} \right)}\\ {}&{ \ge \frac{{{k_1} - 1}}{2}\left\| {{P^{\frac{1}{2}}}{u_t}} \right\|_2^2 + \left( {\frac{{{k_1}}}{2} - 1} \right)\left\| {P{u_t}} \right\|_2^2 + \frac{{{k_1} - {c_0}}}{2}\left\| {Pu} \right\|_2^2}\\ {}&{ \ge \left\| {{P^{\frac{1}{2}}}{u_t}} \right\|_2^2 + \left\| {P{u_t}} \right\|_2^2 + \left\| {Pu} \right\|_2^2,} \end{array} where the facts k1≥ {4,2 + c0} and Sobolev imbedding theorem (see [17]) P12u22c0Pu22uH2m(Ω)H0m(Ω)\left\| {{P^{\frac{1}{2}}}u} \right\|_2^2 \le {c_0}\left\| {Pu} \right\|_2^2\,\,\,\,\forall u \in {H^{2m}}\left( \Omega \right) \cap H_0^m\left( \Omega \right) have been used. So, by the estimates (3.45) and (3.46) that P12ut22+Pu(t)22+Put(t)22C5eλ3t+C4λ31,t0\left\| {{P^{\frac{1}{2}}}{u_t}} \right\|_2^2 + \left\| {Pu\left( t \right)} \right\|_2^2 + \left\| {P{u_t}\left( t \right)} \right\|_2^2 \le {C_5}{e^{ - {\lambda _3}t}} + {C_4}\lambda _3^{ - 1},t \ge 0 with C4 = C4 (F,H1,H2), C5 = C5 (‖Pu02, ‖Pu12 ,F,H1,H2).

To establish the uniqueness, we suppose that u(t) and v(t) are two solutions of (1.1), which supply the estimates (2.5)–(2.7) and u(0) = v(0), u (0) = v (0). Taking U (t) = ut (t), V (t) = vt (t) and W (t) = U (t) − V (t), then we see from (1.1) that WtPWPWtP(uv)=g(x,v)g(x,u),xΩ,t0.{W_t} - PW - P{W_t} - P\left( {u - v} \right) = g\left( {x,v} \right) - g\left( {x,u} \right),\,\,x \in \Omega ,\,\,t \ge 0. Multiplying (3.48) by W, we obtain 12ddt(W(t)22+P12W(t)22)+P12W(t)22+ΩP12(uv)P12Wdx=Ω(g(x,v)g(x,u))Wdx\begin{array}{l} \frac{1}{2}\frac{d}{{dt}}\left( {\left\| {W\left( t \right)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}W\left( t \right)} \right\|_2^2} \right) + \left\| {{P^{\frac{1}{2}}}W\left( t \right)} \right\|_2^2 + \int_\Omega {{P^{\frac{1}{2}}}\left( {u - v} \right){P^{\frac{1}{2}}}Wdx} \\ = \int_\Omega {\left( {g\left( {x,v} \right) - g\left( {x,u} \right)} \right)Wdx} \end{array} and W(t)22+P12W(t)22+20tP12W(s)22ds+20tΩP12(u(s)v(s))P12W(s)dxds=20tΩ(g(x,v(s))g(x,u(s)))W(s)dxds.\begin{array}{l} \left\| {W\left( t \right)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}W\left( t \right)} \right\|_2^2 + 2\int_0^t {\left\| {{P^{\frac{1}{2}}}W\left( s \right)} \right\|_2^2ds} + 2\int_0^t {\int_\Omega {{P^{\frac{1}{2}}}\left( {u\left( s \right) - v\left( s \right)} \right){P^{\frac{1}{2}}}W\left( s \right)dxds} } \\ = 2\int_0^t {\int_\Omega {\left( {g\left( {x,v\left( s \right)} \right) - g\left( {x,u\left( s \right)} \right)} \right)W\left( s \right)dxds.} } \end{array} Since |P12(u(s)v(s))|0s|P12(uτ(τ)vτ(τ))|dτ=0s|P12W(τ)|dτ\left| {{P^{\frac{1}{2}}}\left( {u\left( s \right) - v\left( s \right)} \right)} \right| \le \int_0^s {\left| {{P^{\frac{1}{2}}}\left( {{u_\tau }\left( \tau \right) - {v_\tau }\left( \tau \right)} \right)} \right|d\tau } = \int_0^s {\left| {{P^{\frac{1}{2}}}W\left( \tau \right)} \right|d\tau } then P12(u(s)v(s))2s1/2(0sP12W(τ)22dτ)1/2{\left\| {{P^{\frac{1}{2}}}\left( {u\left( s \right) - v\left( s \right)} \right)} \right\|_2} \le {s^{1/2}}{\left( {\int_0^s {\left\| {{P^{\frac{1}{2}}}W\left( \tau \right)} \right\|_2^2d\tau } } \right)^{1/2}} and 0tΩ|P12(u(s)v(s))P12W(s)|dxds0tΩ0s|P12W(s)||P12W(τ)|dxdτds0t0sP12W(s)2P12W(τ)2dτdst0tP12W(s)22ds.\begin{array}{*{20}{l}} {\int_0^t {\int_\Omega {\left| {{P^{\frac{1}{2}}}\left( {u\left( s \right) - v\left( s \right)} \right){P^{\frac{1}{2}}}W\left( s \right)} \right|dxds} } }&{ \le \int_0^t {\int_\Omega {\int_0^s {\left| {{P^{\frac{1}{2}}}W\left( s \right)} \right|} \left| {{P^{\frac{1}{2}}}W\left( \tau \right)} \right|dxd\tau ds} } }\\ {}&{ \le \int_0^t {\int_0^s {{{\left\| {{P^{\frac{1}{2}}}W\left( s \right)} \right\|}_2}} {{\left\| {{P^{\frac{1}{2}}}W\left( \tau \right)} \right\|}_2}d\tau } ds}\\ {}&{ \le t\int_0^t {\left\| {{P^{\frac{1}{2}}}W\left( s \right)} \right\|_2^2ds.} } \end{array} Now, taking Uɛ (s) = ɛu(s) + (1 − ɛ)v(s), 0 ≤ ɛ ≤ 1, we get G=0tΩ|g(x,u(s))g(x,v(s))||W(s)|dxds=0tΩ|01ddεg(x,Uε)dε||W(s)|dxds0tΩ01|gu(x,Uε)||u(s)v(s)||W(s)|dεdxdsk20tΩ(|u|α1+|v|α1+h2(x))|u(s)v(s)||W(s)|dxdsc00t(u(s)σ1σ1+v(s)σ1σ1+h2(s)σ2σ2)P12(u(s)v(s))2P12W(s)2ds\begin{array}{*{20}{l}} G&{ = \int_0^t {\int_\Omega {\left| {g\left( {x,u\left( s \right)} \right) - g\left( {x,v\left( s \right)} \right)} \right|\left| {W\left( s \right)} \right|dxds = \int_0^t {\int_\Omega {\left| {\int_0^1 {\frac{d}{{d\varepsilon }}g\left( {x,{U_\varepsilon }} \right)d\varepsilon } } \right|\left| {W\left( s \right)} \right|dxds} } } } }\\ {}&{ \le \int_0^t {\int_\Omega {\int_0^1 {\left| {{g_u}\left( {x,{U_\varepsilon }} \right)} \right|\left| {u\left( s \right) - v\left( s \right)} \right|\left| {W\left( s \right)} \right|d\varepsilon dxds} } } }\\ {}&{ \le {k_2}\int_0^t {\int_\Omega {\left( {{{\left| u \right|}^{\alpha - 1}} + {{\left| v \right|}^{\alpha - 1}} + {h_2}\left( x \right)} \right)\left| {u\left( s \right) - v\left( s \right)} \right|\left| {W\left( s \right)} \right|dxds} } }\\ {}&{ \le {c_0}\int_0^t {\left( {\left\| {u\left( s \right)} \right\|_{{\sigma _1}}^{{\sigma _1}} + \left\| {v\left( s \right)} \right\|_{{\sigma _1}}^{{\sigma _1}} + \left\| {{h_2}\left( s \right)} \right\|_{{\sigma _2}}^{{\sigma _2}}} \right){{\left\| {{P^{\frac{1}{2}}}\left( {u\left( s \right) - v\left( s \right)} \right)} \right\|}_2}{{\left\| {{P^{\frac{1}{2}}}W\left( s \right)} \right\|}_2}ds} } \end{array} where σ1 = n(α − 1)/2 2n/(n − 2), σ2 = n/2.

From (2.5) and Sobolev imbedding theorem, there is C3> 0 such that u(s)σ1σ1+v(s)σ1σ1+h2σ2σ2C0(P12u(s)2σ1+P12v(s)2σ1+h2σ2σ2)C3s0.\left\| {u\left( s \right)} \right\|_{{\sigma _1}}^{{\sigma _1}} + \left\| {v\left( s \right)} \right\|_{{\sigma _1}}^{{\sigma _1}} + \left\| {{h_2}} \right\|_{{\sigma _2}}^{{\sigma _2}} \le {C_0}\left( {\left\| {{P^{\frac{1}{2}}}u\left( s \right)} \right\|_2^{{\sigma _1}} + \left\| {{P^{\frac{1}{2}}}v\left( s \right)} \right\|_2^{{\sigma _1}} + \left\| {{h_2}} \right\|_{{\sigma _2}}^{{\sigma _2}}} \right) \le {C_3}\forall s \ge 0. Then, GC30ts1/2(0sP12W(τ)22dτ)1/2P12W(s)2dsC3t0tP12W(τ)22dτ.G \le {C_3}\int_0^t {{s^{1/2}}} {\left( {\int_0^s {\left\| {{P^{\frac{1}{2}}}W\left( \tau \right)} \right\|_2^2d\tau } } \right)^{1/2}}{\left\| {{P^{\frac{1}{2}}}W\left( s \right)} \right\|_2}ds \le {C_3}t\int_0^t {\left\| {{P^{\frac{1}{2}}}W\left( \tau \right)} \right\|_2^2d\tau } . Then, the estimates (3.50)–(3.52) indicate that W(t)22+P12W(t)22+20tP12W(s)22(C3+1)t0tP12W(s)22ds.\left\| {W\left( t \right)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}W\left( t \right)} \right\|_2^2 + 2\int_0^t {\left\| {{P^{\frac{1}{2}}}W\left( s \right)} \right\|_2^2 \le \left( {{C_3} + 1} \right)t\int_0^t {\left\| {{P^{\frac{1}{2}}}W\left( s \right)} \right\|_2^2ds} .} The integral inequality (3.53) represents that there exists T1> 0, such that W (t) = 0 in [0,T1]. As a result, u(t) − v(t) = u(0) − v(0) = 0 in [0,T1].

Then, we conduce that u(t) = v(t) on [T1,2T1], [2T1,3T1],..., and u(t) = v(t) on [0,∞). This shows the proof of uniqueness.

Now, we establish u ∈ C ([0,∞); H0m(Ω))\left. {H_0^m \left( \Omega \right)} \right) ). Assume t > s ≥ 0. Then, P12(u(t))u(s)22=Ω|stP12uτ(τ)dτ|2dx(ts)stP12uτ(τ)dτ22dτ0asts.\begin{array}{*{20}{l}} {\left\| {{P^{\frac{1}{2}}}\left( {u\left( t \right)} \right) - u\left( s \right)} \right\|_2^2}&{ = {{\int_\Omega {\left| {\int_s^t {{P^{\frac{1}{2}}}{u_\tau }\left( \tau \right)d\tau } } \right|} }^2}dx}\\ {}&{ \le \left( {t - s} \right)\int_s^t {\left\| {{P^{\frac{1}{2}}}{u_\tau }\left( \tau \right)d\tau } \right\|_2^2d\tau } \to 0\,{\rm{as}}\,t \to s.} \end{array} This indicates u(t) ∈ C ([0,∞); H0m(Ω))\left. {H_0^m \left( \Omega \right)} \right) . Also, we get P(u(t)u(s))22=Ω|stPuτ(τ)dτ|2dx(ts)stPuτ(τ)22dτ0asts.\begin{array}{*{20}{l}} {\left\| {P\left( {u\left( t \right) - u\left( s \right)} \right)} \right\|_2^2}&{ = \int_\Omega {{{\left| {\int_s^t {P{u_\tau }\left( \tau \right)d\tau } } \right|}^2}dx} }\\ {}&{ \le \left( {t - s} \right)\int_s^t {\left\| {P{u_\tau }\left( \tau \right)} \right\|_2^2d\tau } \to 0\,{\rm{as}}\,t \to s.} \end{array} and u(t) ∈ C [0,∞); H2m(Ω)H0m(Ω))H^{2m} \left( \Omega \right) \cap \left. {H_0^m \left( \Omega \right)} \right) .

Moreover, we get P12(ut(t)ut)(s)22(ts)stP12utt(τ)22dτ0asts.\left\| {{P^{\frac{1}{2}}}\left( {{u_t}\left( t \right) - {u_t}} \right)\left( s \right)} \right\|_2^2 \le \left( {t - s} \right)\int_s^t {\left\| {{P^{\frac{1}{2}}}{u_{tt}}\left( \tau \right)} \right\|_2^2d\tau } \to 0\,{\rm{as}}\,t \to s. This shows that u(t) ∈ C1 ([0,∞); H0m{H_0^m } ) and the proof of Theorem 3 is completed.

Global attractor for the problem (1)

By Theorem 3, we see that the solution operatör S (t)(u0,u1) = (u(t),ut (t)), t ≥ 0 of the problem (1.1) creates a semigroup on X=(H2m(Ω)H0m(Ω))×(H2m(Ω)H0m(Ω))X = \left( {H^{2m} \left( \Omega \right) \cap H_0^m \left( \Omega \right)} \right) \times \left( {H^{2m} \left( \Omega \right) \cap H_0^m \left( \Omega \right)} \right) , which supplies these properties:

S (t) : X → X for all t ≥ 0;

S (t + s) = S (t)S (s) for t,s ≥ 0;

S (t)(u0,u1) → S (s)(u0,u1) in X as t → s for any (u0,u1) ∈ X.

For establishing the existence of the (X,X)-global attractor for the problem (1.1), firstly, we show the continuity of S (t) relating to the initial data (u0,u1).

The proof of Theorem 4

Suppose uk (t), u(t) is corresponding solution of the problem (1.1) with the initial data (u0k,u1k) and (u0,u1) respectively, k = 1,2,....

Since (u0k,u1k) (u0,u1) in X, {(u0k,u1k)} is bounded in X. Set wk (t) = uk (t) − u(t). Then, wk holds {wkPwkPwk'Pwk=g(x,u)g(x,uk)=Gk,(x,t)Ω×(0,),wk(x,0)=u0k(x)u0(x),wk'(x,0)=u1k(x)u1(x),xΩ,wk(x,t)=0,(x,t)Ω×[0,).\left\{ {\begin{array}{*{20}{c}} {w_k^{\prime\prime} - P{w_k} - Pw_k^\prime - Pw_k^{\prime\prime} = g\left( {x,u} \right) - g\left( {x,{u_k}} \right) = {G_k},\left( {x,t} \right) \in \Omega \times \left( {0,\infty } \right),}\\ {{w_k}\left( {x,0} \right) = {u_{0k}}\left( x \right) - {u_0}\left( x \right),w_k^\prime\left( {x,0} \right) = {u_{1k}}\left( x \right) - {u_1}\left( x \right),x \in \Omega ,}\\ {{w_k}\left( {x,t} \right) = 0,\left( {x,t} \right) \in \partial \Omega \times [0,\infty ).} \end{array}} \right. Multiplying the equation in (4.1) by wk,−Pwk and −Pwk, we get 12ddt(wk'22+P12wk22+P12wk'22)+(1η)P12wk'22CηGk22\frac{1}{2}\frac{d}{{dt}}\left( {\left\| {w_k^\prime} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}{w_k}} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}w_k^\prime} \right\|_2^2} \right) + \left( {1 - \eta } \right)\left\| {{P^{\frac{1}{2}}}w_k^\prime} \right\|_2^2 \le {C_\eta }\left\| {{G_k}} \right\|_2^2 and ddt(12Pwk22+Ω(Pwk'Pwk+P12wkP12wk')dx)+(1η)Pwk22Pwk'22+P12wk'22+CnGk22c0Pwk'22+CηGk22\begin{array}{*{20}{l}} {\,\,\frac{d}{{dt}}\left( {\frac{1}{2}\left\| {P{w_k}} \right\|_2^2 + \int_\Omega {\left( {Pw_k^\primeP{w_k} + {P^{\frac{1}{2}}}{w_k}{P^{\frac{1}{2}}}w_k^\prime} \right)dx} } \right) + \left( {1 - \eta } \right)\left\| {P{w_k}} \right\|_2^2}\\ { \le \left\| {Pw_k^\prime} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}w_k^\prime} \right\|_2^2 + {C_n}\left\| {{G_k}} \right\|_2^2 \le {c_0}\left\| {Pw_k^\prime} \right\|_2^2 + {C_\eta }\left\| {{G_k}} \right\|_2^2} \end{array} and 12ddt(P12wk'22+Pwk22+Pwk'22)+(1η)Pwk'22CηGk22\frac{1}{2}\frac{d}{{dt}}\left( {\left\| {{P^{\frac{1}{2}}}w_k^\prime} \right\|_2^2 + \left\| {P{w_k}} \right\|_2^2 + \left\| {Pw_k^\prime} \right\|_2^2} \right) + \left( {1 - \eta } \right)\left\| {Pw_k^\prime} \right\|_2^2 \le {C_\eta }\left\| {{G_k}} \right\|_2^2 with small η > 0. Then, by (4.2) and (4.4) we obtain yk'(t)+(k(1η)c0)Pwk'22+(1η)P12wk'22+(1η)Pwk(t)22kCηGk22y_k^\prime\left( t \right) + \left( {k\left( {1 - \eta } \right) - {c_0}} \right)\left\| {Pw_k^\prime} \right\|_2^2 + \left( {1 - \eta } \right)\left\| {{P^{\frac{1}{2}}}w_k^\prime} \right\|_2^2 + \left( {1 - \eta } \right)\left\| {P{w_k}\left( t \right)} \right\|_2^2 \le k{C_\eta }\left\| {{G_k}} \right\|_2^2 where yk(t)=k1+12(Pwk(t)22+P12wk'(t)22)+12(P12wk(t)22+wk'(t)22)+k12P12wk'(t)22+Ω(Pwk'(t)Pwk(t)+P12wk(t)P12wk'(t))dxk1+22(Pwk(t)22+P12wk'(t)22)+k1+12Pwk'(t)22+wk'(t)22+P12wk'(t)22C0(Pwk'(t)22+Pwk(t)22+P12wk'(t)22)\begin{array}{*{20}{l}} {{y_k}(t)}&{ = \frac{{{k_1} + 1}}{2}\left( {\left\| {P{w_k}(t)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}w_k^\prime(t)} \right\|_2^2} \right)}\\ {}&{\,\,\,\,\, + \frac{1}{2}\left( {\left\| {{P^{\frac{1}{2}}}{w_k}(t)} \right\|_2^2 + \left\| {w_k^\prime(t)} \right\|_2^2} \right) + \frac{{{k_1}}}{2}\left\| {{P^{\frac{1}{2}}}w_k^\prime(t)} \right\|_2^2}\\ {}&{\,\,\,\,\, + \int_\Omega {\left( {Pw_k^\prime(t)P{w_k}(t) + {P^{\frac{1}{2}}}{w_k}(t){P^{\frac{1}{2}}}w_k^\prime(t)} \right)dx} }\\ {}&{\, \le \frac{{{k_1} + 2}}{2}\left( {\left\| {P{w_k}(t)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}w_k^\prime(t)} \right\|_2^2} \right)}\\ {}&{\,\,\,\,\, + \frac{{{k_1} + 1}}{2}\left\| {Pw_k^\prime(t)} \right\|_2^2 + \left\| {w_k^\prime(t)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}w_k^\prime(t)} \right\|_2^2}\\ {}&{ \le {C_0}\left( {\left\| {Pw_k^\prime(t)} \right\|_2^2 + \left\| {P{w_k}(t)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}w_k^\prime(t)} \right\|_2^2} \right)} \end{array} By taking k1 3 yk(t)=k1+12(Pwk(t)22+P12wk'(t)22)+12(P12wk(t)22+wk'(t)22)+k12P12wk'(t)2212(Pwk'22+Pwk'22)12(P12wk'22+P12wk'22)Pw(t)22+P12wk'(t)22+Pwk'(t)22,t0.\begin{array}{*{20}{l}} {{y_k}(t)}&{\, = \frac{{{k_1} + 1}}{2}\left( {\left\| {P{w_k}(t)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}w_k^\prime(t)} \right\|_2^2} \right)}\\ {}&{ + \frac{1}{2}\left( {\left\| {{P^{\frac{1}{2}}}{w_k}(t)} \right\|_2^2 + \left\| {w_k^\prime(t)} \right\|_2^2} \right) + \frac{{{k_1}}}{2}\left\| {{P^{\frac{1}{2}}}w_k^\prime(t)} \right\|_2^2}\\ {}&{ - \frac{1}{2}\left( {\left\| {Pw_k^\prime} \right\|_2^2 + \left\| {Pw_k^\prime} \right\|_2^2} \right) - \frac{1}{2}\left( {\left\| {{P^{\frac{1}{2}}}w_k^\prime} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}w_k^\prime} \right\|_2^2} \right)}\\ {}&{ \ge \left\| {Pw(t)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}w_k^\prime(t)} \right\|_2^2 + \left\| {Pw_k^\prime(t)} \right\|_2^2,\,\,t \ge 0.} \end{array} Otherwise, we obtain from assumption (A2), Gk22=Ω|g(x,uk)g(x,u)|2dx=Ωgu2wk2dxc0Ω(|uk|2(α1)+|u|2(α1)+h22)wk2dx.\begin{array}{*{20}{l}} {\left\| {{G_k}} \right\|_2^2}&{ = \int_\Omega {{{\left| {g\left( {x,{u_k}} \right) - g\left( {x,u} \right)} \right|}^2}dx} = \int_\Omega {g_u^2w_k^2dx} }\\ {}&{ \le {c_0}\int_\Omega {\left( {{{\left| {{u_k}} \right|}^{2\left( {\alpha - 1} \right)}} + {{\left| u \right|}^{2\left( {\alpha - 1} \right)}} + h_2^2} \right)w_k^2dx.} } \end{array} The application of Sobolev imbedding theorem and the estimate (2.7) gives Ω|uk|2(α1)wk2dxwk2μ22uk2(α1)μ32(α1)C3wk2μ22C3wk22\int_\Omega {{{\left| {{u_k}} \right|}^{2\left( {\alpha - 1} \right)}}} w_k^2dx \le \left\| {{w_k}} \right\|_{2{\mu _2}}^2\left\| {{u_k}} \right\|_{2\left( {\alpha - 1} \right){\mu _3}}^{2\left( {\alpha - 1} \right)} \le {C_3}\left\| {{w_k}} \right\|_{2{\mu _2}}^2 \le {C_3}\left\| {{w_k}} \right\|_2^2 with μ2 = n/(n − 4)+ and μ3 = μ2/(μ2 − 1). Similarly, Ω|uk|2(α1)wk2dxwk2μ22u2(α1)μ32(α1)C3wk2μ22C3Pwk22\int_\Omega {{{\left| {{u_k}} \right|}^{2\left( {\alpha - 1} \right)}}} w_k^2dx \le \left\| {{w_k}} \right\|_{2{\mu _2}}^2\left\| u \right\|_{2\left( {\alpha - 1} \right){\mu _3}}^{2\left( {\alpha - 1} \right)} \le {C_3}\left\| {{w_k}} \right\|_{2{\mu _2}}^2 \le {C_3}\left\| {P{w_k}} \right\|_2^2 and Ωh22wk2dxwk2μ22h2N/22C3wk2μ22C3Pwk22.\int_\Omega {h_2^2} w_k^2dx \le \left\| {{w_k}} \right\|_{2{\mu _2}}^2\left\| {{h_2}} \right\|_{N/2}^2 \le {C_3}\left\| {{w_k}} \right\|_{2{\mu _2}}^2 \le {C_3}\left\| {P{w_k}} \right\|_2^2. Then, we get from (4.5) to (4.11) that λ 4 > 0, such that yk'(t)+λ4yk(t)C3Gk22C3wk2μ22C3Pwk2μ22C3yk(t)y_k^\prime\left( t \right) + {\lambda _4}{y_k}\left( t \right) \le {C_3}\left\| {{G_k}} \right\|_2^2 \le {C_3}\left\| {{w_k}} \right\|_{2{\mu _2}}^2 \le {C_3}\left\| {P{w_k}} \right\|_{2{\mu _2}}^2 \le {C_3}{y_k}\left( t \right) where C3 is as in (2.6), independent of k. The differential inequality (4.12) means yk(t)yk(0)e(C3λ4)t,t0.{y_k}\left( t \right) \le {y_k}\left( 0 \right){e^{\left( {{C_3} - {\lambda _4}} \right)t}},t \ge 0. Then, from (4.6) and (4.7), we obtain yk(0)C0(P12(u1ku1)22+P(u0ku0)22+P(u1ku1)22)0ask{y_k}\left( 0 \right) \le {C_0}\left( {\left\| {{P^{\frac{1}{2}}}\left( {{u_{1k}} - {u_1}} \right)} \right\|_2^2 + \left\| {P\left( {{u_{0k}} - {u_0}} \right)} \right\|_2^2 + \left\| {P\left( {{u_{1k}} - {u_1}} \right)} \right\|_2^2} \right) \to 0\,{\rm{as}}\,k \to \infty and Pwk(t)22+P12wk'22+Pwk'22yk(t)yk(0)e(C3λ4)t0ask.\left\| {P{w_k}\left( t \right)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}w_k^\prime} \right\|_2^2 + \left\| {Pw_k^\prime} \right\|_2^2 \le {y_k}\left( t \right) \le {y_k}\left( 0 \right){e^{\left( {{C_3} - {\lambda _4}} \right)t}} \to 0\,\,{\rm{as}}\,k \to \infty . This indicates that S (t) : X → X is continuous. Now we show that {S (t)}t≥0 is asymptotically compact in X from the method in [9].

Assume {(u0k,u1k)} is a bounded sequence and {uk (t)} be the corresponding solutions of the problem (1.1) in C [0,∞); H2m(Ω)H0m(Ω))H^{2m} \left( \Omega \right) \cap \left. {H_0^m \left( \Omega \right)} \right) . We suppose tk ∞ as k → ∞. For any T > 0, assume tn,tk> T. Then, the application of (4.12) to wkn (t) = un (t + tnT ) − uk (t + tnT ), we get Ykn(t)Ykn(0)eλ4t+C30teλ4(ts)wkn(s)2μ22ds,t0{Y_{kn}}\left( t \right) \le {Y_{kn}}\left( 0 \right){e^{ - {\lambda _4}t}} + {C_3}\int_0^t {{e^{ - {\lambda _4}\left( {t - s} \right)}}} \left\| {{w_{kn}}\left( s \right)} \right\|_{2{\mu _2}}^2ds,t \ge 0 with Ykn(t)=Pwkn(t)22+P12wkn'(t)22+Pwkn'(t)22.{Y_{kn}}\left( t \right) = \left\| {P{w_{kn}}\left( t \right)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}w_{kn}^\prime\left( t \right)} \right\|_2^2 + \left\| {Pw_{kn}^\prime\left( t \right)} \right\|_2^2. Especially, we take t = T and obtain P(un(tn))uk(tk)22+P12(un'(tn)uk'(tk))22+P(un'(tn)uk'(tk))22Ykn(0)eλ4T+C3sup0sTuk(tkT+s)un(tnT+s)2μ22.\begin{array}{l} \left\| {P\left( {{u_{ & n}}\left( {{t_n}} \right)} \right) - {u_k}\left( {{t_k}} \right)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}\left( {\user1{u}_n^\prime\left( {{t_n}} \right) - u_k^\prime\left( {{t_k}} \right)} \right)} \right\|_2^2 + \left\| {P\left( {u_n^\prime\left( {{t_n}} \right) - u_k^\prime\left( {{t_k}} \right)} \right)} \right\|_2^2\\ \le {Y_{kn}}\left( 0 \right){e^{ - {\lambda _4}T}} + {C_3}\mathop {\sup }\limits_{0 \le s \le T} \left\| {{u_k}\left( {{t_k} - T + s} \right) - {u_n}\left( {{t_n} - T + s} \right)} \right\|_{2{\mu _2}}^2. \end{array} Since the embedding (H2m(Ω)H0m(Ω))L2μ2(Ω)\left( {{H^{2m}}\left( \Omega \right) \cap H_0^m\left( \Omega \right)} \right) \hookrightarrow {L^{2{\mu _2}}}\left( \Omega \right)\ is compact, we can remove a subsequence {ukk1(tkk1T + s)} which converges in L2μ2 (Ω). Therefore, for any ɛ > 0, firstly we fix T > 0, such that Ykn(0)eλ4T<ε2.{Y_{kn}}\left( 0 \right){e^{ - {\lambda _4}T}} < \frac{\varepsilon }{2}. Supposing n0> 0 and k1, j > n0, we get C3sup0sTukk1(tkk1T+s)ukj(tkjT+s)2μ22<ε2.{C_3}\mathop {\sup }\limits_{0 \le s \le T} \left\| {{u_{{k_{{k_1}}}}}\left( {{t_{{k_{{k_1}}}}} - T + s} \right) - {u_{{k_j}}}\left( {{t_{{k_j}}} - T + s} \right)} \right\|_{2{\mu _2}}^2 < \frac{\varepsilon }{2}. Then, it follows by (4.18) to (4.20) that {ukk1(tkk1)} is a Cauchy sequence in X and we finalize that {S (t)}t≥0 is asyptotically compact on X and now Theorem 4 is established.

Proof of Theorem 5

From Lemma 2, it is sufficient to indicate that there exists a continuous operator semigroup {S (t)} on X such that S (t)(u0,u1) = (u(t),ut (t)) for each t ≥ 0. By the estimates (2.7), we accomplish that β0={(u,v)XP12v22+Pu22+Pv22C4}{\beta _0} = \left\{ {\left( {u,v} \right) \in X\left\| {{P^{\frac{1}{2}}}v} \right\|_2^2 + \left\| {Pu} \right\|_2^2 + \left\| {Pv} \right\|_2^2 \le {C_4}} \right\} is an absorbing set of {S (t)}t≥0 and for any (u0,u1) ∈ X, distX(S(t)(u0,u1),β0)C5eλ3t,t0\user1{dis}{\user1{t}_X}\left( {S\left( t \right)\left( {{u_0},{u_{ & 1}}} \right),{\beta _0}} \right) \le {C_5}{e^{ - {\lambda _3}t}},t \ge 0 where the constants C4, C5 are in (2.7). By Theorem 2, S (t) : X → X is continuous and asymptotically compact on X. From a general theory (see [1, 11]), we conclude that S (t) admits a global attractor A on X defined by A=ω(β0)=τ0[S(t)tτβ0]XA = \omega \left( {{\beta _0}} \right) = \mathop \cap \limits_{\tau \ge 0} {\left[ {\mathop { \cup S\left( t \right)}\limits_{t \ge \tau } {\beta _0}} \right]_X} where [D]X is the closure of the set D in X. Then we prove the Theorem 5.

Decay property of solution for (1)

In this section, we search the decay property of solution to (1.1) with f ≣ 0. Firstly, we present a well-known Lemma that will be needed.

Lemma 7

([18])

Assume E : [0,∞) [0,∞) is a non-increasing function and suppose that there are constants q ≥ 0 and γ > 0 such thatSEq+1(t)dtγ1E(0)qE(s),S0.\int_S^\infty {{E^{q + 1}}} \left( t \right)dt \le {\gamma ^{ - 1}}E{\left( 0 \right)^q}E\left( s \right),\forall S \ge 0.Then, we getE(t)E(0)(1+q1+qγt)1/qt0ifq>0E\left( t \right) \le E\left( 0 \right){\left( {\frac{{1 + q}}{{1 + q\gamma t}}} \right)^{1/q}}\forall t \ge 0\,ifq > 0andE(t)E(0)e1γtt0ifq=0.E\left( t \right) \le E\left( 0 \right){e^{1 - \gamma t}}\forall t \ge 0ifq = 0.

Proof of Theorem 7

Suppose u(t) is a weak solution in Theorem 3 with f = 0. Show E(t)=12(u(t)22+P12u(t)22+P12ut(t)22)+ΩG(u(t))dx,t0.E\left( t \right) = \frac{1}{2}\left( {\left\| {u\left( t \right)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}u\left( t \right)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}{u_t}\left( t \right)} \right\|_2^2} \right) + \int_\Omega {G\left( {u\left( t \right)} \right)dx,t \ge 0.} Then, we obtain by (1.1) that E(t)+P12ut2=0,0.E\prime\left( t \right) + {\left\| {{P^{\frac{1}{2}}}{u_t}} \right\|^2} = 0,\,\,\,\forall \ge 0. This indicates that E (t) is non-increasing in [0,∞).

Multiplying the equation in (1.1) by Eq (t)u(t), q > 0, we obtain STEqΩu(uttPuPutt+g(u))dxdt=0,T>S0.\int_S^T {{E^q}} \int_\Omega {u\left( {{u_{tt}} - Pu - P{u_{tt}} + g\left( u \right)} \right)dxdt} = 0,\,\,\forall T > S \ge 0. We note that STEq(t)(u,utt)dt=Eq(t)(u,ut)|STST(qE(t)q1E(t)(u,ut)+Eq(t)ut(t)22)STEq(t)(u,Pu)dt=STEq(t)P12u22STEq(t)(u,Put)dt=STEq(t)(P12u,P12ut)dt\begin{array}{l} \left. {\int_S^T {{E^q}\left( t \right)\left( {u,{u_{tt}}} \right)} dt = {E^q}\left( t \right)\left( {u,{u_t}} \right)} \right|_S^T - \int_S^T {\left( {qE{{\left( t \right)}^{q - 1}}E\prime\left( t \right)\left( {u,{u_t}} \right) + {E^q}\left( t \right)\left\| {{u_t}\left( t \right)} \right\|_2^2} \right)} \\ - \int_S^T {{E^q}\left( t \right)\left( {u,Pu} \right)dt} = \int_S^T {{E^q}\left( t \right)\left\| {{P^{\frac{1}{2}}}u} \right\|_2^2} \\ - \int_S^T {{E^q}} \left( t \right)\left( {u,P{u_t}} \right)dt = \int_S^T {{E^q}\left( t \right)\left( {{P^{\frac{1}{2}}}u,{P^{\frac{1}{2}}}{u_t}} \right)dt} \end{array} and STEq(t)(u,Putt)dt=ST(qE(t)q1E(t)(P12u,P12ut)+Eq(t)P12ut(t)22)dt+Eq(t)(P12u,P12ut)|ST.\begin{array}{*{20}{l}} { - \int_S^T {{E^q}\left( t \right)\left( {u,P{u_{tt}}} \right)dt} }&{ = - \int_S^T {\left( {qE{{\left( t \right)}^{q - 1}}E\prime\left( t \right)\left( {{P^{\frac{1}{2}}}u,{P^{\frac{1}{2}}}{u_t}} \right) + {E^q}\left( t \right)\left\| {{P^{\frac{1}{2}}}{u_t}\left( t \right)} \right\|_2^2} \right)dt} }\\ {}&{\,\,\,\,\,\left. { + {E^q}\left( t \right)\left( {{P^{\frac{1}{2}}}u,{P^{\frac{1}{2}}}{u_t}} \right)} \right|_S^T.} \end{array} Then, we get by (5.6) that 2STEq+1(t)dt=Eq(t)[(u,ut)+(P12u,P12ut)|ST]+qSTE(t)q1E(t)[(u,ut)+(P12u,P12ut)]dt+2STEq(t)(ut(t)22+P12ut(t)22)dt+STEq(t)(P12u,P12ut)dt+STEq(t)(2G(u)ug(u))dt.\begin{array}{*{20}{l}} {2\int_S^T {{E^{q + 1}}\left( t \right)dt = } }&{ - {E^q}\left( t \right)\left[ {\left. {\left( {u,{u_t}} \right) + \left( {{P^{\frac{1}{2}}}u,{P^{\frac{1}{2}}}{u_t}} \right)} \right|_S^T} \right]}\\ {}&{ + q\int_S^T {E{{\left( t \right)}^{q - 1}}E\prime\left( t \right)\left[ {\left( {u,{u_t}} \right) + \left( {{P^{\frac{1}{2}}}u,{P^{\frac{1}{2}}}ut} \right)} \right]} dt}\\ {}&{ + 2\int_S^T {{E^q}\left( t \right)\left( {\left\| {{u_t}\left( t \right)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}{u_t}\left( t \right)} \right\|_2^2} \right)dt} }\\ {}&{ + \int_S^T {{E^q}\left( t \right)\left( {{P^{\frac{1}{2}}}u,{P^{\frac{1}{2}}}{u_t}} \right)dt} + \int_S^T {{E^q}} \left( t \right)\left( {2G\left( u \right) - ug\left( u \right)} \right)dt.} \end{array} Since G(u) 0, E (t) 0. Moreover, we get the following estimates from (5.5): P12ut(t)2(E(t))1/2,P12u(t)222(E(t))1/2,P12ut(t)22(E(t))1/2,0,{\left\| {{P^{\frac{1}{2}}}{u_t}\left( t \right)} \right\|_2} \le {\left( { - E\prime\left( t \right)} \right)^{1/2}},\,\,\,\,\,\left\| {{P^{\frac{1}{2}}}u\left( t \right)} \right\|_2^2 \le 2{\left( {E\left( t \right)} \right)^{1/2}},{\left\| {{P^{\frac{1}{2}}}{u_t}\left( t \right)} \right\|_2} \le 2{\left( {E\left( t \right)} \right)^{1/2}},\forall \ge 0,|Eq(t)((u,ut)+(P12u,P12ut))|C0Eq(t)P12u2P12ut(t)2C0Eq+1(t),\left| {{E^q}\left( t \right)\left( {\left( {u,{u_t}} \right) + \left( {{P^{\frac{1}{2}}}u,{P^{\frac{1}{2}}}{u_t}} \right)} \right)} \right| \le {C_0}{E^q}\left( t \right){\left\| {{P^{\frac{1}{2}}}u} \right\|_2}{\left\| {{P^{\frac{1}{2}}}{u_t}\left( t \right)} \right\|_2} \le {C_0}{E^{q + 1}}\left( t \right),ST|E(t)q1E(t)|[(u,ut)+(P12u,P12ut)]dtC0STE(t)q1|E(t)|P12u2P12ut2dtC0Eq+1(S),\begin{array}{l} \int_S^T {\left| {E{{\left( t \right)}^{q - 1}}E\prime\left( t \right)} \right|\left[ {\left( {u,{u_t}} \right) + \left( {{P^{\frac{1}{2}}}u,{P^{\frac{1}{2}}}{u_t}} \right)} \right]} dt\\ \le {C_0}\int_S^T {E{{\left( t \right)}^{q - 1}}} \left| {E\prime\left( t \right)} \right|{\left\| {{P^{\frac{1}{2}}}u} \right\|_2}{\left\| {{P^{\frac{1}{2}}}{u_t}} \right\|_2}dt \le {C_0}{E^{q + 1}}\left( S \right), \end{array}2STEq(t)(ut(t)22+P12ut(t)22)dtC0STEq(t)(E(t))1/2C0Eq+1(s),2\int_S^T {{E^q}} \left( t \right)\left( {\left\| {{u_t}\left( t \right)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}{u_t}\left( t \right)} \right\|_2^2} \right)dt \le {C_0}\int_S^T {{E^q}} \left( t \right){\left( { - E\prime\left( t \right)} \right)^{1/2}} \le {C_0}{E^{q + 1}}\left( s \right),STEq(t)(P12u,P12ut)dtSTEq(t)P12u2P12ut2STEq+1(t)dt+C1Eq+1(S).\begin{array}{*{20}{l}} {\int_S^T {{E^q}\left( t \right)\left( {{P^{\frac{1}{2}}}u,{P^{\frac{1}{2}}}{u_t}} \right)dt} }&{ \le \int_S^T {{E^q}\left( t \right){{\left\| {{P^{\frac{1}{2}}}u} \right\|}_2}{{\left\| {{P^{\frac{1}{2}}}{u_t}} \right\|}_2}} }\\ {}&{ \le \int_S^T {{E^{q + 1}}\left( t \right)dt} + {C_1}{E^{q + 1}}\left( S \right).} \end{array} Then we obtain from (5.8) to (5.12) that STEq+1(t)dtC0Eq+1(S)C0Eq(0)E(S)γ1Eq(0)E(S).\int_S^T {{E^{q + 1}}\left( t \right)dt} \le {C_0}{E^{q + 1}}\left( S \right) \le {C_0}{E^q}\left( 0 \right)E\left( S \right) \equiv {\gamma ^{ - 1}}{E^q}\left( 0 \right)E\left( S \right). From Lemma 10, we get E(t)=12(u(t)22+P12u(t)22+P12ut(t)22)+ΩG(u(t))dxE(0)(1+q1+qγt)1/qC1(1+t)1/q.\begin{array}{*{20}{l}} {E\left( t \right)}&{ = \frac{1}{2}\left( {\left\| {u\left( t \right)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}u\left( t \right)} \right\|_2^2 + \left\| {{P^{\frac{1}{2}}}{u_t}\left( t \right)} \right\|_2^2} \right) + \int_\Omega {G\left( {u\left( t \right)} \right)dx} }\\ {}&{ \le E\left( 0 \right){{\left( {\frac{{1 + q}}{{1 + q\gamma t}}} \right)}^{1/q}} \le {C_1}{{\left( {1 + t} \right)}^{ - 1/q}}.} \end{array} This is the estimates (2.8) and the proof of Theorem 7 is completed.

Conclusion 8.In this paper, we obtained the global attractor and the asymptotic behavior of global solution for the higher-order evolution equation with damping term. This improves and extends many results in the literature such as (Xie and Zhong (2007); Chen et al. (2011)).

eISSN:
2444-8656
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics