Open Access

A study on certain properties of generalized special functions defined by Fox-Wright function


Cite

Introduction

On the last quarter century, some generalizations of special functions, which frequently used in applied mathematics, have been studied by many scientists [1, 7,8, 9, 10, 11, 12, 13,14, 17, 19,20,21,22,23,24,25,26,27,28,29, 31, 32, 33]. Chaudhry and Zubair [10] defined the extended gamma function in 1994 as Γp(x)=0tx1exp[tpt]dt,{\Gamma _p}(x) = \int_0^\infty {t^{x - 1}}\exp \left[ { - t - {p \over t}} \right]dt, where Re(p) > 0. Three years later, Chaudhry et al. [7] defined the extended beta function as Bp(x,y)=01tx1(1t)y1exp[pt(1t)]dt,{B_p}(x,y) = \int_0^1 {t^{x - 1}}{(1 - t)^{y - 1}}\exp \left[ { - {p \over {t(1 - t)}}} \right]dt, where Re(p) > 0, Re(x) > 0, Re(y) > 0. It clearly seems that, for p = 0, Γ0(x) = Γ(x) and B0(x,y) = B(x,y), where Γ(x) and B(x,y) are the classical gamma and beta functions [6].

In 2004, Chaudhry et al. [8] used Bp(x,y) to extend the Gauss and confluent hypergeometric functions as follows: Fp(a,b;c;z)=n=0(a)nBp(b+n,cb)B(b,cb)znn!,_{}{F_p}(a,b;c;z) = \sum\limits_{n = 0}^\infty {(a)_n}{{{B_p}(b + n,c - b)} \over {B(b,c - b)}}{{{z^n}} \over {n!}},Φp(b;c;z)=n=0Bp(b+n,cb)B(b,cb)znn!,_{}{\Phi _p}(b;c;z) = \sum\limits_{n = 0}^\infty {{{B_p}(b + n,c - b)} \over {B(b,c - b)}}{{{z^n}} \over {n!}}, where p ≥ 0, Re(c) > Re(b) > 0. In the same paper, the authors also gave the integral representations of (1) and (2) as Fp(a,b;c;z)=1B(b,cb)01tb1(1t)cb1(1zt)aexp[pt(1t)]dt,_{}{F_p}(a,b;c;z) = {1 \over {B(b,c - b)}}\int_0^1 {t^{b - 1}}{(1 - t)^{c - b - 1}}{(1 - zt)^{ - a}}\exp \left[ { - {p \over {t(1 - t)}}} \right]dt, where p > 0, p = 0 and |arg(1 − z)| < π < p, Re(c) > Re(b) > 0, and Φp(b;c;z)=1B(b,cb)01tb1(1t)cb1exp[ztpt(1t)]dt,_{}{\Phi _p}(b;c;z) = {1 \over {B(b,c - b)}}\int_0^1 {t^{b - 1}}{(1 - t)^{c - b - 1}}\exp \left[ {zt - {p \over {t(1 - t)}}} \right]dt, where p > 0, p = 0 and Re(c) > Re(b) > 0. Here (a)n is the Pochhammer symbol which defined as (a)ν=Γ(a+ν)Γ(a),a,ν{(a)_\nu } = {{\Gamma (a + \nu )} \over {\Gamma (a)}},\;a,\nu \in \mathbb{C} with the assume (a)0 ≣ 1.

The Fox-Wright function is given in [18] as ξΨη(z)=ξΨη[(βi,αi)1,ξ(μj,κj)1,η|z]=n=0i=1ξΓ(αin+βi)j=1ηΓ(κjn+μj)znn!,_\xi {\Psi _\eta }(z{) = _\xi }{\Psi _\eta }\left[ {\matrix{ {{{({\beta _i},{\alpha _i})}_{1,\xi }}} \cr {{{({\mu _j},{\kappa _j})}_{1,\eta }}} \cr } |z} \right] = \sum\limits_{n = 0}^\infty {{\prod\limits_{i = 1}^\xi \Gamma ({\alpha _i}n + {\beta _i})} \over {\prod\limits_{j = 1}^\eta \Gamma ({\kappa _j}n + {\mu _j})}}{{{z^n}} \over {n!}}, where z,βi, µj ℂ,αi,κj ℝ,i = 1...ξ and j = 1...η. The asymptotic behaviour of the above function was studied by Fox [15, 16] and Wright [34, 35, 36] for the large values of z, considering the condition j=1ηκji=1ξαi>1.\sum\limits_{j = 1}^\eta {\kappa _j} - \sum\limits_{i = 1}^\xi {\alpha _i} > - 1. If these conditions are met, for any z ∈ ℂ the series (3) is convergent. For κ, µ,z ∈ ℂ,Re(κ) > −1, the classic Wright function [18] 0Ψ1(z)=0Ψ1[_(μ,κ)|z]=n=01Γ(κn+μ)znn!_0{\Psi _1}(z{) = _0}{\Psi _1}\left[ {\matrix{ {\underline \quad } \cr {(\mu ,\kappa )} \cr } |z} \right] = \sum\limits_{n = 0}^\infty {1 \over {\Gamma (\kappa n + \mu )}}{{{z^n}} \over {n!}} can obtained by choosing ξ = 0 and η = 1 in equation (3).

Inspired by the aforementioned studies and motivated by the frequent use of Fox-Wright function in the theory of special functions, we defined two new functions as generalizations of gamma and beta functions.

Generalized functions and their properties

Throughout the study, we assume that x,y,z ∈ ℂ, k,m,n ∈ ℕ, αi,κj ℝ, βi, µj,a,b,c, p ∈ ℂ, Re(p) > 0, Re(x) > 0, Re(y) > 0, and Re(c) > Re(b) > 0. For the sake of shortness, we did not wrote these conditions for the rest of the article, unless otherwise stated.

Let us defined the new generalizations as ΨΓ^p(x):=ΨΓp[(βi,αi)1,ξ(μj,κj)1,η|x]=0tx1ξΨη(tpt)dt^\Psi {\Gamma _p}(x{): = ^\Psi }{\Gamma _p}\left[ {\matrix{{{{({\beta _i},{\alpha _i})}_{1,\xi }}} \cr {{{({\mu _j},{\kappa _j})}_{1,\eta }}} \cr } |x} \right] = \int_0^\infty {t^{x - 1}}_\xi {\Psi _\eta }\left( { - t - {p \over t}} \right)dt and ΨB^p(x,y):=ΨBp[(βi,αi)1,ξ(μj,κj)1,η|x,y]=01tx1(1t)y1ξΨη(pt(1t))dt.^\Psi {\hat B_p}(x,y{): = ^\Psi }{B_p}\left[ {\matrix{{{{({\beta _i},{\alpha _i})}_{1,\xi }}} \cr {{{({\mu _j},{\kappa _j})}_{1,\eta }}} \cr } |x,y} \right] = \int_0^1 {t^{x - 1}}{(1 - t)^{y - 1}}_\xi {\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right)dt. We called them as ξΨη-gamma and ξΨη-beta functions.

Our first theorem is about the current relationship of the two ξ Ψη-gamma functions.

Theorem 1

The following equality holds true:ΨΓ^p(x)ΨΓ^p(y)=40π20r2(x+y)1(cosθ)2x1(sinθ)2y1×ξΨη(r2(cosθ)2pr2(cosθ)2)×ξΨη(r2(sinθ)2pr2(sinθ)2)drdθ.\eqalign{ & ^\Psi {\Gamma _p}{(x)^\Psi }{\Gamma _p}(y) = 4\int_0^{{\pi \over 2}} \int_0^\infty {r^{2(x + y) - 1}}{(\cos \theta )^{2x - 1}}{(\sin \theta )^{2y - 1}} \cr & { \times _\xi }{\Psi _\eta }\left( { - {r^2}{{(\cos \theta )}^2} - {p \over {{r^2}{{(\cos \theta )}^2}}}} \right) \cr & { \times _\xi }{\Psi _\eta }\left( { - {r^2}{{(\sin \theta )}^2} - {p \over {{r^2}{{(\sin \theta )}^2}}}} \right)drd\theta . \cr}

Proof

Substituting t = u2 in (4), we get ΨΓ^p(x)=20u2x1ξΨη(u2pu2)du.^\Psi {\Gamma _p}(x) = 2\int_0^\infty {u^{2x - 1}}_\xi {\Psi _\eta }\left( { - {u^2} - {p \over {{u^2}}}} \right)du. Therefore, ΨΓ^p(x)ΨΓ^p(y)=400u2x1v2y1ξΨη(u2pu2)ξΨη(v2pv2)dudv.^\Psi {\Gamma _p}{(x)^\Psi }{\Gamma _p}(y) = 4\int_0^\infty \int_0^\infty {u^{2x - 1}}{v^{2y - 1}}_\xi {\Psi _\eta }{\left( { - {u^2} - {p \over {{u^2}}}} \right)_\xi }{\Psi _\eta }\left( { - {v^2} - {p \over {{v^2}}}} \right)dudv. In the above equality, taking u = r(cosθ) and v = r(sinθ) yields ΨΓ^p(x)ΨΓ^p(y)=40π20r2(x+y)1(cosθ)2x1(sinθ)2y1×ξΨη(r2(cosθ)2pr2(cosθ)2)×ξΨη(r2(sinθ)2pr2(sinθ)2)drdθ,\eqalign{ & ^\Psi {\Gamma _p}{(x)^\Psi }{\Gamma _p}(y) = 4\int_0^{{\pi \over 2}} \int_0^\infty {r^{2(x + y) - 1}}{(\cos \theta )^{2x - 1}}{(\sin \theta )^{2y - 1}} \cr & { \times _\xi }{\Psi _\eta }\left( { - {r^2}{{(\cos \theta )}^2} - {p \over {{r^2}{{(\cos \theta )}^2}}}} \right) \cr & { \times _\xi }{\Psi _\eta }\left( { - {r^2}{{(\sin \theta )}^2} - {p \over {{r^2}{{(\sin \theta )}^2}}}} \right)drd\theta , \cr} which completes the proof.

Theorem 2

TheξΨη-beta function has the following integral representations:ΨB^p(x,y)=20π2(sinθ)2x1(cosθ)2y1ξΨη(p(secθ)2(cscθ)2)dθ,ΨB^p(x,y)=0ux1(1+u)x+yξΨη(2pp(u+1u))du,ΨB^p(x,y)=(ca)1xyac(ua)x1(cu)y1ξΨη(p(ca)2(ua)(cu))du.\eqalign{ & ^\Psi {{\hat B}_p}(x,y) = 2\int_0^{{\pi \over 2}} {(\sin \theta )^{2x - 1}}{(\cos \theta )^{2y - 1}}_\xi {\Psi _\eta }\left( { - p{{(\sec \theta )}^2}{{(\csc \theta )}^2}} \right)d\theta , \cr & ^\Psi {{\hat B}_p}(x,y) = \int_0^\infty {{{u^{x - 1}}} \over {{{(1 + u)}^{x + y}}}}{ _\xi }{\Psi _\eta }\left( { - 2p - p\left( {u + {1 \over u}} \right)} \right)du, \cr & ^\Psi {{\hat B}_p}(x,y) = (c - a{)^{1 - x - y}}\int_a^c {(u - a)^{x - 1}}{(c - u)^{y - 1}}_\xi {\Psi _\eta }\left( {{{ - p{{(c - a)}^2}} \over {(u - a)(c - u)}}} \right)du. \cr}

Proof

Taking t = (sinθ)2 in (5), we get ΨB^p(x,y)=01tx1(1t)y1ξΨη(pt(1t))dt=20π2(sinθ)2x1(cosθ)2y1ξΨη(p(secθ)2(cscθ)2)dθ.\eqalign{ & ^\Psi {{\hat B}_p}(x,y) = \int_0^1 {t^{x - 1}}{(1 - t)^{y - 1}}_\xi {\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right)dt \cr & = 2\int_0^{{\pi \over 2}} {(\sin \theta )^{2x - 1}}{(\cos \theta )^{2y - 1}}_\xi {\Psi _\eta }\left( { - p{{(\sec \theta )}^2}{{(\csc \theta )}^2}} \right)d\theta . \cr}

Taking t=u1+ut = {u \over {1 + u}} in (5), we get ΨB^p(x,y)=0(u1+u)x1(11+u)y1(11+u)2ξΨη(p(u1+u)(11+u))du=0ux1(1+u)x+yξΨη(2pp(u+1u))du.\eqalign{ & ^\Psi {{\hat B}_p}(x,y) = \int_0^\infty {\left( {{u \over {1 + u}}} \right)^{x - 1}}{\left( {{1 \over {1 + u}}} \right)^{y - 1}}{\left( {{1 \over {1 + u}}} \right)^2}{_\xi }{\Psi _\eta }\left( { - {p \over {\left( {{u \over {1 + u}}} \right)\left( {{1 \over {1 + u}}} \right)}}} \right)du \cr & = \int_0^\infty {{{u^{x - 1}}} \over {{{(1 + u)}^{x + y}}}}{ _\xi }{\Psi _\eta }\left( { - 2p - p\left( {u + {1 \over u}} \right)} \right)du. \cr} Taking t=uacat = {{u - a} \over {c - a}} in (5), we get ΨB^p(x,y)=ac(uaca)x1(1uaca)y11caξΨη(p(ca)2(ua)(cu))du=(ca)1xyac(ua)x1(cu)y1ξΨη(p(ca)2(ua)(cu))du,\eqalign{ & ^\Psi {{\hat B}_p}(x,y) = \int_a^c {\left( {{{u - a} \over {c - a}}} \right)^{x - 1}}{\left( {1 - {{u - a} \over {c - a}}} \right)^{y - 1}}{1 \over {c - a}}{ _\xi }{\Psi _\eta }\left( {{{ - p{{(c - a)}^2}} \over {(u - a)(c - u)}}} \right)du \cr & = (c - a{)^{1 - x - y}}\int_a^c {(u - a)^{x - 1}}{(c - u)^{y - 1}}{ _\xi }{\Psi _\eta }\left( { - {{p{{(c - a)}^2}} \over {(u - a)(c - u)}}} \right)du, \cr} which gives the result.

Theorem 3

The following derivative formula is provided for Re(x) > m, Re(y) > m:dmdpm{ΨB^p(x,y)}=(1)mΨBp[(αim+βi,αi)1,ξ(κjm+μj,κj)1,η|xm,ym].{{{d^m}} \over {d{p^m}}}\left\{ {^\Psi {{\hat B}_p}(x,y)} \right\} = {( - 1)^m}{ ^\Psi }{B_p}\left[ {\matrix{ {{{({\alpha _i}m + {\beta _i},{\alpha _i})}_{1,\xi }}} \cr {{{({\kappa _j}m + {\mu _j},{\kappa _j})}_{1,\eta }}} \cr } |x - m,y - m} \right].

Proof

It is done by induction. The first order derivative of (5) is as follows: ddp{ΨB^p(x,y)}=ddp{01tx1(1t)y1ξΨη(pt(1t))dt}=(1)ΨBp[(αi+βi,αi)1,ξ(κj+μj,κj)1,η|x1,y1].\eqalign{& {d \over {dp}}\left\{ {^\Psi {{\hat B}_p}(x,y)} \right\} = {d \over {dp}}\left\{ {\int_0^1 {t^{x - 1}}{{(1 - t)}^{y - 1}}_\xi {\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right)dt} \right\} \cr & = ( - {1) ^\Psi }{B_p}\left[ {\matrix{{{{({\alpha _i} + {\beta _i},{\alpha _i})}_{1,\xi }}} \cr {{{({\kappa _j} + {\mu _j},{\kappa _j})}_{1,\eta }}} \cr } |x - 1,y - 1} \right]. \cr} Let us assume that the k-order derivative of (5) is dkdpk{ΨB^p(x,y)}=(1)kΨBp[(αik+βi,αi)1,ξ(κjk+μj,κj)1,η|xk,yk].{{{d^k}} \over {d{p^k}}}\left\{ {^\Psi {{\hat B}_p}(x,y)} \right\} = {( - 1)^k}{ ^\Psi }{B_p}\left[ {\matrix{{{{({\alpha _i}k + {\beta _i},{\alpha _i})}_{1,\xi }}} \cr {{{({\kappa _j}k + {\mu _j},{\kappa _j})}_{1,\eta }}} \cr } |x - k,y - k} \right]. From the first order derivative of (6), the k + 1-order derivative is found as follows: dk+1dpk+1{ΨB^p(x,y)}=ddp{dkdpk{ΨB^p(x,y)}}=(1)k+1ΨBp[(αi(k+1)+βi,αi)1,ξ(κj(k+1)+μj,κj)1,η|x(k+1),y(k+1)].\eqalign{& {{{d^{k + 1}}} \over {d{p^{k + 1}}}}\left\{ {^\Psi {{\hat B}_p}(x,y)} \right\} = {d \over {dp}}\left\{ {{{{d^k}} \over {d{p^k}}}\left\{ {^\Psi {{\hat B}_p}(x,y)} \right\}} \right\} \cr & = ( - {1)^{k + 1}}{ ^\Psi }{B_p}\left[ {\matrix{{{{({\alpha _i}(k + 1) + {\beta _i},{\alpha _i})}_{1,\xi }}} \cr {{{({\kappa _j}(k + 1) + {\mu _j},{\kappa _j})}_{1,\eta }}} \cr } |x - (k + 1),y - (k + 1)} \right]. \cr} This gives the result.

Theorem 4

The following equality is provided for Re(s) > 0: [ΨB^p(x,y)]=B(x+s,y+s)ΨΓ^p(s).{\cal M}\left[ {^\Psi {{\hat B}_p}(x,y)} \right] = B{(x + s,y + s)^\Psi }{\Gamma _p}(s).

Proof

If we apply Mellin transformation according to argument p in equation (5), we have [ΨB^p(x,y)]=0ps101tx1(1t)y1ξΨη(pt(1t))dtdp=01tx1(1t)y10ps1ξΨη(pt(1t))dpdt.\eqalign{ & {\cal M}\left[ {^\Psi {{\hat B}_p}(x,y)} \right] = \int_0^\infty {p^{s - 1}}\int_0^1 {t^{x - 1}}{(1 - t)^{y - 1}}_\xi {\Psi _\eta }\left( {{{ - p} \over {t(1 - t)}}} \right)dtdp \cr & = \int_0^1 {t^{x - 1}}{(1 - t)^{y - 1}}\int_0^\infty {p^{s - 1}}_\xi {\Psi _\eta }\left( {{{ - p} \over {t(1 - t)}}} \right)dpdt. \cr} Letting v=pt(1t)v = {p \over {t(1 - t)}} in (7), we get [ΨB^p(x,y)]=01tx+s1(1t)y+s1dt0vs1ξΨη(v)dv.{\cal M}\left[ {^\Psi {{\hat B}_p}(x,y)} \right] = \int_0^1 {t^{x + s - 1}}{(1 - t)^{y + s - 1}}dt\int_0^\infty {v^{s - 1}}_\xi {\Psi _\eta }\left( { - v} \right)dv.

Thus, we have [ΨB^p(x,y)]=B(x+s,y+s)ΨΓp(s),{\cal M}\left[ {^\Psi {{\hat B}_p}(x,y)} \right] = B{(x + s,y + s)^\Psi }{\Gamma _p}(s), which completes the proof.

Remark 1

By using the inverse Mellin transform, it is easy to see ΨB^p(x,y)=12πii+iB(x+s,y+s)ΨΓp(s)psds^\Psi {\hat B_p}(x,y) = {1 \over {2\pi i}}\int_{ - i\infty }^{ + i\infty } B{(x + s,y + s)^\Psi }{\Gamma _p}(s){p^{ - s}}ds for Re(s) > 0.

Theorem 5

The following equality holds true:ΨB^p(x,y)=ΨB^p(x+1,y)+ΨB^p(x,y+1).^\Psi {\hat B_p}(x,y) = {^\Psi }{\hat B_p}(x + 1,y) + {^\Psi }{\hat B_p}(x,y + 1).

Proof

Direct calculation yields ΨB^p(x,y)=01tx1(1t)y1ξΨη(pt(1t))dt=01tx(1t)y1t(1t)ξΨη(pt(1t))dt=01tx(1t)y[(1t)1+t1]ξΨη(pt(1t))dt=01[tx(1t)y1+tx1(1t)y]ξΨη(pt(1t))dt=01tx(1t)y1ξΨη(pt(1t))dt+01tx1(1t)yξΨη(pt(1t))dt=ΨB^p(x+1,y)+ΨB^p(x,y+1),\eqalign{ & ^\Psi {{\hat B}_p}(x,y) = \int_0^1 {t^{x - 1}}{(1 - t)^{y - 1}}_\xi {\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right)dt \cr & = \int_0^1 {t^x}{(1 - t)^y}{1 \over {t(1 - t)}}{ _\xi }{\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right)dt \cr & = \int_0^1 {t^x}{(1 - t)^y}{\left[ {{{(1 - t)}^{ - 1}} + {t^{ - 1}}} \right]_\xi }{\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right)dt \cr & = \int_0^1 {\left[ {{t^x}{{(1 - t)}^{y - 1}} + {t^{x - 1}}{{(1 - t)}^y}} \right]_\xi }{\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right)dt \cr & = \int_0^1 {t^x}{(1 - t)^{y - 1}}_\xi {\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right)dt + \int_0^1 {t^{x - 1}}{(1 - t)^y}_\xi {\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right)dt \cr & { = ^\Psi }{{\hat B}_p}(x + 1,y) + {^\Psi }{{\hat B}_p}(x,y + 1), \cr} which is the result.

Theorem 6

The following summation formula is provided for Re(y) < 1: ΨB^p(x,1y)=n=0(y)nn!ΨB^p(x+n,1).^\Psi {\hat B_p}(x,1 - y) = \sum\limits_{n = 0}^\infty {{{{{(y)}_n}} \over {n!}}^\Psi }{\hat B_p}(x + n,1).

Proof

From the definition of the ξ Ψη-beta function, we obtain ΨB^p(x,1y)=01tx1(1t)yξΨη(pt(1t))dt.^\Psi {\hat B_p}(x,1 - y) = \int_0^1 {t^{x - 1}}{(1 - t)^{ - y}}_\xi {\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right)dt. With the help of the following series expression (1t)y=n=0(y)ntnn!,|t|<1,{(1 - t)^{ - y}} = \sum\limits_{n = 0}^\infty {(y)_n}{{{t^n}} \over {n!}},\quad |t| < 1, we obtain ΨB^p(x,1y)=01n=0(y)nn!tx+n1ξΨη(pt(1t))dt=n=0(y)nn!01tx+n1ξΨη(pt(1t))dt=n=0(y)nn!ΨB^p(x+n,1).\eqalign{ & ^\Psi {{\hat B}_p}(x,1 - y) = \int_0^1 \sum\limits_{n = 0}^\infty {{{{(y)}_n}} \over {n!}}{t^{x + n - 1}}_\xi {\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right)dt \cr & = \sum\limits_{n = 0}^\infty {{{{(y)}_n}} \over {n!}}\int_0^1 {t^{x + n - 1}}_\xi {\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right)dt \cr & = \sum\limits_{n = 0}^\infty {{{{{(y)}_n}} \over {n!}}^\Psi }{{\hat B}_p}(x + n,1). \cr} This completes the proof.

Theorem 7

The following equality holds true:ΨB^p(x,y)=n=0ΨB^p(x+n,y+1).^\Psi {\hat B_p}(x,y) = {\sum\limits_{n = 0}^\infty ^\Psi }{\hat B_p}(x + n,y + 1).

Proof

From the definition of the ξΨη-beta function, we get ΨB^p(x,y)=01tx1(1t)y1ξΨη(pt(1t))dt.^\Psi {\hat B_p}(x,y) = \int_0^1 {t^{x - 1}}{(1 - t)^{y - 1}}_\xi {\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right)dt. With the help of the following series expression (1t)y1=(1t)yn=0tn,|t|<1,{(1 - t)^{y - 1}} = {(1 - t)^y}\sum\limits_{n = 0}^\infty {t^n},\quad |t| < 1, we obtain ΨB^p(x,y)=01tx1(1t)yn=0tnξΨη(pt(1t))dt=n=001tx+n1(1t)yξΨη(pt(1t))dt=n=0ΨB^p(x+n,y+1),\eqalign{& ^\Psi {{\hat B}_p}(x,y) = \int_0^1 {t^{x - 1}}{(1 - t)^y}\sum\limits_{n = 0}^\infty {t^n}_\xi {\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right)dt \cr & = \sum\limits_{n = 0}^\infty \int_0^1 {t^{x + n - 1}}{(1 - t)^y}_\xi {\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right)dt \cr & = {\sum\limits_{n = 0}^\infty ^\Psi }{{\hat B}_p}(x + n,y + 1), \cr} which gives the result.

Theorem 8

The following relation is provided for Re(x) > 1,Re(y) > 1: xΨB^p(x,y+1)=yΨB^p(x+1,y)+2pΨBp[(αi+βi,αi)1,ξ(κj+μj,κj)1,η|x,y1]pΨBp[(αi+βi,αi)1,ξ(κj+μj,κj)1,η|x1,y1].\eqalign{& {x^\Psi }{{\hat B}_p}(x,y + 1) = \;{y^\Psi }{{\hat B}_p}(x + 1,y) \cr & + 2{p^\Psi }{B_p}\left[ {\matrix{{{{({\alpha _i} + {\beta _i},{\alpha _i})}_{1,\xi }}} \cr {{{({\kappa _j} + {\mu _j},{\kappa _j})}_{1,\eta }}} \cr } |x,y - 1} \right] \cr & - {p^\Psi }{B_p}\left[ {\matrix{{{{({\alpha _i} + {\beta _i},{\alpha _i})}_{1,\xi }}} \cr {{{({\kappa _j} + {\mu _j},{\kappa _j})}_{1,\eta }}} \cr } |x - 1,y - 1} \right]. \cr}

Proof

(5) equality provides the following equation ΨB^p(x,y)=[f^(t:y;p):x]^\Psi {\hat B_p}(x,y) = {\cal M}[\hat f(t:y;p):x] where f^(t:y;p)=(1t)y1H(1t)ξΨη(pt(1t))\hat f(t:y;p) = {(1 - t)^{y - 1}}H(1 - t{) _\xi }{\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right) and H(1t)={0,t>1,1,t<1.H(1 - t) = \left\{ {\matrix{{0,t > 1,} \cr {1,t < 1.} \cr }} \right. The derivative of f^(t:y;p)\hat f(t:y;p) according to the parameter t provides the following equation: ddt{f^(t:y;p)}=δ(1t)(1t)y1ξΨη(pt(1t))(y1)(1t)y2H(1t)ξΨη(pt(1t))+p(12t)t2(1t)2(1t)y1H(1t)ξΨη(pt(1t)),\eqalign{& {d \over {dt}}\left\{ {\hat f(t:y;p)} \right\} = - \delta (1 - t)(1 - t{)^{y - 1}}_\xi {\Psi _\eta }\left( {{{ - p} \over {t(1 - t)}}} \right) \cr & - (y - 1)(1 - t{)^{y - 2}}H(1 - t{) _\xi }{\Psi _\eta }\left( {{{ - p} \over {t(1 - t)}}} \right) \cr & + {{p(1 - 2t)} \over {{t^2}{{(1 - t)}^2}}}{(1 - t)^{y - 1}}H(1 - t{) _\xi }{\Psi _\eta }\left( {{{ - p} \over {t(1 - t)}}} \right), \cr} where ddtH(1t)=δ(1t){d \over {dt}}H(1 - t) = - \delta (1 - t) and δ represents the Dirac delta δ (1−t) = δ (t −1) = 0 for t ≠ 1. The relationship between the derivative of a function and the Mellin transformation is as follows: [f(x):s]=F(s)[f'(x):s]=(s1)F(s1).{\cal M}[f(x):s] = F(s) \Rightarrow {\cal M}[{f^'}(x):s] = - (s - 1)F(s - 1). From here, by arranging, we find that (x1)ΨB^p(x1,y)=(y1)ΨB^p(x,y1)+pΨBp[(αi+βi,αi)1,ξ(κj+μj,κj)1,η|x2,y2]2pΨBp[(αi+βi,αi)1,ξ(κj+μj,κj)1,η|x1,y2].\eqalign{& - {(x - 1)^\Psi }{{\hat B}_p}(x - 1,y) = - {(y - 1)^\Psi }{{\hat B}_p}(x,y - 1) \cr & + {p^\Psi }{B_p}\left[ {\matrix{{{{({\alpha _i} + {\beta _i},{\alpha _i})}_{1,\xi }}} \cr {{{({\kappa _j} + {\mu _j},{\kappa _j})}_{1,\eta }}} \cr } |x - 2,y - 2} \right] \cr & - 2{p^\Psi }{B_p}\left[ {\matrix{{{{({\alpha _i} + {\beta _i},{\alpha _i})}_{1,\xi }}} \cr {{{({\kappa _j} + {\mu _j},{\kappa _j})}_{1,\eta }}} \cr } |x - 1,y - 2} \right]. \cr} Finally if x replaced by x + 1 and y replaced by y + 1 we get (8).

xiΨη-generalization of Gauss and confluent hypergeometric functions

We used the ξ Ψη-beta function (5) to define the generalizations of Gauss and confluent hypergeometric functions as ΨF^p(a,b;c;z):=ΨFp[(βi,αi)1,ξ(μj,κj)1,η|a,b;c;z]=n=0(a)nΨB^p(b+n,cb)B(b,cb)znn!^\Psi {\hat F_p}(a,b;c;z): = {^\Psi }{F_p}\left[ {\matrix{{{{({\beta _i},{\alpha _i})}_{1,\xi }}} \cr {{{({\mu _j},{\kappa _j})}_{1,\eta }}} \cr } | a,b;c;z} \right] = \sum\limits_{n = 0}^\infty {(a)_n}{{^\Psi {{\hat B}_p}(b + n,c - b)} \over {B(b,c - b)}}{{{z^n}} \over {n!}} and ΨΦ^p(b;c;z):=ΨΦp[(βi,αi)1,ξ(μj,κj)1,η|b;c;z]=n=0ΨB^p(b+n,cb)B(b,cb)znn!,^\Psi {\hat \Phi _p}(b;c;z{): = ^\Psi }{\Phi _p}\left[ {\matrix{{{{({\beta _i},{\alpha _i})}_{1,\xi }}} \cr {{{({\mu _j},{\kappa _j})}_{1,\eta }}} \cr } |b;c;z} \right] = \sum\limits_{n = 0}^\infty {{^\Psi {{\hat B}_p}(b + n,c - b)} \over {B(b,c - b)}}{{{z^n}} \over {n!}}, respectively. We call ΨF^p(a,b;c;z)^\Psi {\hat F_p}(a,b;c;z) as ξΨη-Gauss hypergeometric function and ΨΦ^p(b;c;z)^\Psi {\hat \Phi _p}(b;c;z) as ξΨη-confluent hypergeometric function.

The following two theorems are about the integral representations of ξ Ψη-Gauss and ξ Ψη-confluent hypergeometric functions.

Theorem 9

Theξ Ψη-Gauss hypergeometric function has the following integral representations:ΨF^p(a,b;c;z)=1B(b,cb)01tb1(1t)cb1(1zt)aξΨη(pt(1t))dt,ΨF^p(a,b;c;z)=1B(b,cb)0ub1(1+u)ac[1+u(1z)]aξΨη(2pp(u+1u))du,ΨF^p(a,b;c;z)=2B(b,cb)0π2(sinθ)2b1(cosθ)2c2b1(1z(sinθ)2)aξΨη(p(secθ)2(cscθ)2)dθ.\eqalign{& ^\Psi {{\hat F}_p}(a,b;c;z) = {1 \over {B(b,c - b)}}\int_0^1 {t^{b - 1}}{(1 - t)^{c - b - 1}}{(1 - zt)^{ - a}}_\xi {\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right)dt, \cr & ^\Psi {{\hat F}_p}(a,b;c;z) = {1 \over {B(b,c - b)}}\int_0^\infty {u^{b - 1}}{(1 + u)^{a - c}}{\left[ {1 + u(1 - z)} \right]^{ - a}}_\xi {\Psi _\eta }\left( { - 2p - p\left( {u + {1 \over u}} \right)} \right)du, \cr & ^\Psi {{\hat F}_p}(a,b;c;z) = {2 \over {B(b,c - b)}}\int_0^{{\pi \over 2}} {(\sin \theta )^{2b - 1}}{(\cos \theta )^{2c - 2b - 1}}{\left( {1 - z{{(\sin \theta )}^2}} \right)^{ - a}}_\xi {\Psi _\eta }\left( { - p{{(\sec \theta )}^2}{{(\csc \theta )}^2}} \right)d\theta . \cr}

Proof

Direct calculation yields ΨF^p(a,b;c;z)=n=0(a)nΨB^p(b+n,cb)B(b,cb)znn!=1B(b,cb)n=0(a)n01tb+n1(1t)cb1ξΨη(pt(1t))znn!dt=1B(b,cb)01tb1(1t)cb1ξΨη(pt(1t))n=0(a)n(zt)nn!dt=1B(b,cb)01tb1(1t)cb1ξΨη(pt(1t))(1zt)adt.\eqalign{& ^\Psi {{\hat F}_p}(a,b;c;z) = \sum\limits_{n = 0}^\infty {(a)_n}{{^\Psi {{\hat B}_p}(b + n,c - b)} \over {B(b,c - b)}}{{{z^n}} \over {n!}} \cr & = {1 \over {B(b,c - b)}}\sum\limits_{n = 0}^\infty {(a)_n}\int_0^1 {t^{b + n - 1}}{(1 - t)^{c - b - 1}}_\xi {\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right){{{z^n}} \over {n!}}dt \cr & = {1 \over {B(b,c - b)}}\int_0^1 {t^{b - 1}}{(1 - t)^{c - b - 1}}_\xi {\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right)\sum\limits_{n = 0}^\infty {(a)_n}{{{{(zt)}^n}} \over {n!}}dt \cr & = {1 \over {B(b,c - b)}}\int_0^1 {t^{b - 1}}{(1 - t)^{c - b - 1}}_\xi {\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right){(1 - zt)^{ - a}}dt. \cr} Setting u=t1tu = {t \over {1 - t}} in (9), we get ΨF^p(a,b;c;z)=1B(b,cb)0ub1(1+u)ac[1+u(1z)]aξΨη(2pp(u+1u))du.^\Psi {\hat F_p}(a,b;c;z) = {1 \over {B(b,c - b)}}\int_0^\infty {u^{b - 1}}{(1 + u)^{a - c}}{\left[ {1 + u(1 - z)} \right]^{ - a}}_\xi {\Psi _\eta }\left( { - 2p - p\left( {u + {1 \over u}} \right)} \right)du. Besides, substituting t = (sinθ)2 in (9), we have ΨF^p(a,b;c;z)=2B(b,cb)0π2(sinθ)2b1(cosθ)2c2b1(1z(sinθ)2)aξΨη(p(secθ)2(cscθ)2)dθ.^\Psi {\hat F_p}(a,b;c;z) = {2 \over {B(b,c - b)}}\int_0^{{\pi \over 2}} {(\sin \theta )^{2b - 1}}{(\cos \theta )^{2c - 2b - 1}}{\left( {1 - z{{(\sin \theta )}^2}} \right)^{ - a}}_\xi {\Psi _\eta }\left( { - p{{(\sec \theta )}^2}{{(\csc \theta )}^2}} \right)d\theta .

Similarly, the ξΨη-confluent hypergeometric function is also performed.

Theorem 10

Theξ Ψη-confluent hypergeometric function has the following integral representations:ΨΦ^p(b;c;z)=1B(b,cb)01tb1(1t)cb1eztξΨη(pt(1t))dt,ΨΦ^p(b;c;z)=1B(b,cb)01ucb1(1u)b1ez(1u)ξΨη(pu(1u))du.\eqalign{& ^\Psi {{\hat \Phi }_p}(b;c;z) = {1 \over {B(b,c - b)}}\int_0^1 {t^{b - 1}}{(1 - t)^{c - b - 1}}{e^{zt}}_\xi {\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right)dt, \cr & ^\Psi {{\hat \Phi }_p}(b;c;z) = {1 \over {B(b,c - b)}}\int_0^1 {u^{c - b - 1}}{(1 - u)^{b - 1}}{e^{z(1 - u)}}_\xi {\Psi _\eta }\left( { - {p \over {u(1 - u)}}} \right)du. \cr}

In the following theorems, we obtained the derivative formulas of ξ Ψη-Gauss and ξ Ψη-confluent hypergeometric functions with the help of the following equations: B(b,cb)=cbB(b+1,cb),(a)n+1=a(a+1)n.\eqalign{& B(b,c - b) = {c \over b}B(b + 1,c - b), \cr & {(a)_{n + 1}} = a{(a + 1)_n}. \cr}

Theorem 11

The following equality holds true:dndzn{ΨF^p(a,b;c;z)}=(a)n(b)n(c)n[ΨF^p(a+n,b+n;c+n;z)].{{{d^n}} \over {d{z^n}}}\left\{ {^\Psi {{\hat F}_p}(a,b;c;z)} \right\} = {{{{(a)}_n}{{(b)}_n}} \over {{{(c)}_n}}}\left[ {^\Psi {{\hat F}_p}(a + n,b + n;c + n;z)} \right].

Proof

The derivative of the ΨF^p(a,b;c;z)^\Psi {\hat F_p}(a,b;c;z) according to the argument z is as follows: ddz{ΨF^p(a,b;c;z)}=ddz{n=0(a)nΨB^p(b+n,cb)B(b,cb)znn!}=n=1(a)nΨB^p(b+n,cb)B(b,cb)zn1(n1)!.\eqalign{& {d \over {dz}}\left\{ {^\Psi {{\hat F}_p}(a,b;c;z)} \right\} = {d \over {dz}}\left\{ {\sum\limits_{n = 0}^\infty {{(a)}_n}{{^\Psi {{\hat B}_p}(b + n,c - b)} \over {B(b,c - b)}}{{{z^n}} \over {n!}}} \right\} \cr & = \sum\limits_{n = 1}^\infty {(a)_n}{{^\Psi {{\hat B}_p}(b + n,c - b)} \over {B(b,c - b)}}{{{z^{n - 1}}} \over {(n - 1)!}}. \cr} Replacing n → n + 1, we get ddz{ΨF^p(a,b;c;z)}=(a)(b)(c)n=0(a+1)nΨB^p(b+n+1,cb)B(b+1,cb)znn!=(a)(b)(c)[ΨF^p(a+1,b+1;c+1;z)].\eqalign{& {d \over {dz}}\left\{ {^\Psi {{\hat F}_p}(a,b;c;z)} \right\} = {{(a)(b)} \over {(c)}}\sum\limits_{n = 0}^\infty {(a + 1)_n}{{^\Psi {{\hat B}_p}(b + n + 1,c - b)} \over {B(b + 1,c - b)}}{{{z^n}} \over {n!}} \cr & = {{(a)(b)} \over {(c)}}\left[ {^\Psi {{\hat F}_p}(a + 1,b + 1;c + 1;z)} \right]. \cr} Thus, the general form of the above equation is dndzn{ΨF^p(a,b;c;z)}=(a)n(b)n(c)n[ΨF^p(a+n,b+n;c+n;z)].{{{d^n}} \over {d{z^n}}}\left\{ {^\Psi {{\hat F}_p}(a,b;c;z)} \right\} = {{{{(a)}_n}{{(b)}_n}} \over {{{(c)}_n}}}\left[ {^\Psi {{\hat F}_p}(a + n,b + n;c + n;z)} \right]. This completes the proof.

Theorem 12

The following equality is provided for Re(b) > 2,Re(c) > Re(b + 2): (b1)B(b1,cb+1)ΨF^p(a,b1;c;z)=(cb1)B(b,cb1)ΨF^p(a,b;c1;z)azB(b,cb)ΨF^p(a+1,b;c;z)pB(b2,cb2)ΨFp[(αi+βi,αi)1,ξ(κj+μj,κj)1,η|a,b2;c4;z]+2pB(b1,cb2)ΨFp[(αi+βi,αi)1,ξ(κj+μj,κj)1,η|a,b1;c3;z].\eqalign{& (b - 1)B{(b - 1,c - b + 1)^\Psi }{{\hat F}_p}(a,b - 1;c;z) \cr & = (c - b - 1)B{(b,c - b - 1)^\Psi }{{\hat F}_p}(a,b;c - 1;z) \cr & - azB{(b,c - b)^\Psi }{{\hat F}_p}(a + 1,b;c;z) \cr & - pB{(b - 2,c - b - 2)^\Psi }{F_p}\left[ {\matrix{{{{({\alpha _i} + {\beta _i},{\alpha _i})}_{1,\xi }}} & {} & {} \cr {{{({\kappa _j} + {\mu _j},{\kappa _j})}_{1,\eta }}} & {} & {} \cr } | a,b - 2;c - 4;z} \right] \cr & + 2pB{(b - 1,c - b - 2)^\Psi }{F_p}\left[ {\matrix{{{{({\alpha _i} + {\beta _i},{\alpha _i})}_{1,\xi }}} & {} & {} \cr {{{({\kappa _j} + {\mu _j},{\kappa _j})}_{1,\eta }}} & {} & {} \cr } | a,b - 1;c - 3;z} \right]. \cr}

Proof

Since B(b,cb)ΨF^p(a,b;c;z)B{(b,c - b)^\Psi }{\hat F_p}(a,b;c;z) is the Mellin transform of f^a,b,c(t:z;p)=(1t)cb1(1zt)aH(1t)ξΨη(pt(1t)),{\hat f_{a,b,c}}(t:z;p) = {(1 - t)^{c - b - 1}}{(1 - zt)^{ - a}}H(1 - t{) _\xi }{\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right),B(b,cb)ΨF^p(a,b;c;z)B{(b,c - b)^\Psi }{\hat F_p}(a,b;c;z) has the Mellin transform formula B(b,cb)ΨF^p(a,b;c;z)=[f^a,b,c(t:z;p):b].B{(b,c - b)^\Psi }{\hat F_p}(a,b;c;z) = {\cal M}[{\hat f_{a,b,c}}(t:z;p):b]. Differentiating f^a,b,c(t:z;p){\hat f_{a,b,c}}(t:z;p) with respect to t we obtain ddt{f^a,b,c(t:z;p)}=(cb1)(1t)cb2(1zt)aH(1t)ξΨη(pt(1t))+az(1t)cb1(1zt)(a+1)H(1t)ξΨη(pt(1t))+p1t2(1t)cb3(1zt)aH(1t)ξΨη[(αi+βi,αi)1,ξ(κj+μj,κj)1,η|pt(1t)]2p1t(1t)cb3(1zt)aH(1t)ξΨη[(αi+βi,αi)1,ξ(κj+μj,κj)1,η|pt(1t)].\eqalign{& {d \over {dt}}\left\{ {{{\hat f}_{a,b,c}}(t:z;p)} \right\} = - (c - b - 1)(1 - t{)^{c - b - 2}}{(1 - zt)^{ - a}}H{(1 - t)_\xi }{\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right) \cr & + az{(1 - t)^{c - b - 1}}{(1 - zt)^{ - (a + 1)}}H(1 - t{) _\xi }{\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right) \cr & + p{1 \over {{t^2}}}{(1 - t)^{c - b - 3}}{(1 - zt)^{ - a}}H(1 - t{) _\xi }{\Psi _\eta }\left[ {\matrix{{{{({\alpha _i} + {\beta _i},{\alpha _i})}_{1,\xi }}} & {} & {} \cr {{{({\kappa _j} + {\mu _j},{\kappa _j})}_{1,\eta }}} & {} & {} \cr } |{{ - p} \over {t(1 - t)}}} \right] \cr & - 2p{1 \over t}{(1 - t)^{c - b - 3}}{(1 - zt)^{ - a}}H(1 - t{) _\xi }{\Psi _\eta }\left[ {\matrix{{{{({\alpha _i} + {\beta _i},{\alpha _i})}_{1,\xi }}} & {} & {} \cr {{{({\kappa _j} + {\mu _j},{\kappa _j})}_{1,\eta }}} & {} & {} \cr } |{{ - p} \over {t(1 - t)}}} \right]. \cr} Since {f'(t):b}=(b1){f(t):b1},{\cal M}\left\{ {{f^'}(t):b} \right\} = - (b - 1){\cal M}\left\{ {f(t):b - 1} \right\}, we get (b1)B(b1,cb+1)ΨF^p(a,b1;c;z)=(cb1)B(b,cb1)ΨF^p(a,b;c1;z)azB(b,cb)ΨF^p(a+1,b;c;z)pB(b2,cb2)ΨFp[(αi+βi,αi)1,ξ(κj+μj,κj)1,η|a,b2;c4;z]+2pB(b1,cb2)ΨFp[(αi+βi,αi)1,ξ(κj+μj,κj)1,η|a,b1;c3;z],\eqalign{& (b - 1)B{(b - 1,c - b + 1)^\Psi }{{\hat F}_p}(a,b - 1;c;z) \cr & = (c - b - 1)B{(b,c - b - 1)^\Psi }{{\hat F}_p}(a,b;c - 1;z) \cr & - azB{(b,c - b)^\Psi }{{\hat F}_p}(a + 1,b;c;z) \cr & - pB{(b - 2,c - b - 2)^\Psi }{F_p}\left[ {\matrix{{{{({\alpha _i} + {\beta _i},{\alpha _i})}_{1,\xi }}} & {} & {} \cr {{{({\kappa _j} + {\mu _j},{\kappa _j})}_{1,\eta }}} & {} & {} \cr } | a,b - 2;c - 4;z} \right] \cr & + 2pB{(b - 1,c - b - 2)^\Psi }{F_p}\left[ {\matrix{{{{({\alpha _i} + {\beta _i},{\alpha _i})}_{1,\xi }}} & {} & {} \cr {{{({\kappa _j} + {\mu _j},{\kappa _j})}_{1,\eta }}} & {} & {} \cr } | a,b - 1;c - 3;z} \right], \cr} which gives the result.

Theorem 13

The following equality holds true:dndzn{ΨΦ^p(b;c;z)}=(b)n(c)n[ΨΦ^p(b+n;c+n;z)].{{{d^n}} \over {d{z^n}}}\left\{ {^\Psi {{\hat \Phi }_p}(b;c;z)} \right\} = {{{{(b)}_n}} \over {{{(c)}_n}}}\left[ {^\Psi {{\hat \Phi }_p}(b + n;c + n;z)} \right].

Proof

The derivative of the ΨΦ^p(b;c;z)^\Psi {\hat \Phi _p}(b;c;z) according to argument z is ddz{ΨΦ^p(b;c;z)}=ddz{n=0ΨB^p(b+n,cb)B(b,cb)znn!}=n=1ΨB^p(b+n,cb)B(b,cb)zn1(n1)!.\eqalign{& {d \over {dz}}\left\{ {^\Psi {{\hat \Phi }_p}(b;c;z)} \right\} = {d \over {dz}}\left\{ {\sum\limits_{n = 0}^\infty {{^\Psi {{\hat B}_p}(b + n,c - b)} \over {B(b,c - b)}}{{{z^n}} \over {n!}}} \right\} \cr & = \sum\limits_{n = 1}^\infty {{^\Psi {{\hat B}_p}(b + n,c - b)} \over {B(b,c - b)}}{{{z^{n - 1}}} \over {(n - 1)!}}. \cr} Replacing n → n + 1, we get ddz{ΨΦ^p(b;c;z)}=(b)(c)n=0ΨB^p(b+n+1,cb)B(b+1,cb)znn!=(b)(c)[ΨΦ^p(b+1;c+1;z)].\eqalign{& {d \over {dz}}\left\{ {^\Psi {{\hat \Phi }_p}(b;c;z)} \right\} = {{(b)} \over {(c)}}\sum\limits_{n = 0}^\infty {{^\Psi {{\hat B}_p}(b + n + 1,c - b)} \over {B(b + 1,c - b)}}{{{z^n}} \over {n!}} \cr & = {{(b)} \over {(c)}}\left[ {^\Psi {{\hat \Phi }_p}(b + 1;c + 1;z)} \right]. \cr} Thus, the general form of the above equation gives dndzn{ΨΦ^p(b;c;z)}=(b)n(c)n[ΨΦ^p(b+n;c+n;z)],{{{d^n}} \over {d{z^n}}}\left\{ {^\Psi {{\hat \Phi }_p}(b;c;z)} \right\} = {{{{(b)}_n}} \over {{{(c)}_n}}}\left[ {^\Psi {{\hat \Phi }_p}(b + n;c + n;z)} \right], which is the result.

Theorem 14

The following equality is provided for Re(b) > 2,Re(c) > Re(b + 2): (b1)B(b1,cb+1)ΨΦ^p(b1;c;z)=(cb1)B(b,cb1)ΨΦ^p(b;c1;z)zB(b,cb)ΨΦ^p(b;c;z)pB(b2,cb2)ΨΦp[(αi+βi,αi)1,ξ(κj+μj,κj)1,η|b2;c4;z]+2pB(b1,cb2)ΨΦp[(αi+βi,αi)1,ξ(κj+μj,κj)1,η|b1;c3;z].\eqalign{& (b - 1)B{(b - 1,c - b + 1)^\Psi }{{\hat \Phi }_p}(b - 1;c;z) \cr & = (c - b - 1)B{(b,c - b - 1)^\Psi }{{\hat \Phi }_p}(b;c - 1;z) \cr & - zB{(b,c - b)^\Psi }{{\hat \Phi }_p}(b;c;z) \cr & - pB{(b - 2,c - b - 2)^\Psi }{\Phi _p}\left[ {\matrix{{{{({\alpha _i} + {\beta _i},{\alpha _i})}_{1,\xi }}} & {} & {} \cr {{{({\kappa _j} + {\mu _j},{\kappa _j})}_{1,\eta }}} & {} & {} \cr } | b - 2;c - 4;z} \right] \cr & + 2pB{(b - 1,c - b - 2)^\Psi }{\Phi _p}\left[ {\matrix{{{{({\alpha _i} + {\beta _i},{\alpha _i})}_{1,\xi }}} & {} & {} \cr {{{({\kappa _j} + {\mu _j},{\kappa _j})}_{1,\eta }}} & {} & {} \cr } | b - 1;c - 3;z} \right]. \cr}

Proof

Since B(b,cb)ΨΦ^p(b;c;z)B{(b,c - b)^\Psi }{\hat \Phi _p}(b;c;z) is the Mellin transform of f^b,c(t:z;p)=(1t)cb1eztH(1t)ξΨη(pt(1t)),{\hat f_{b,c}}(t:z;p) = {(1 - t)^{c - b - 1}}{e^{zt}}H(1 - t{) _\xi }{\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right),B(b,cb)ΨΦ^p(b;c;z)B{(b,c - b)^\Psi }{\hat \Phi _p}(b;c;z) has the Mellin transform formula B(b,cb)ΨΦ^p(b;c;z)=[f^b,c(t:z;p):b].B{(b,c - b)^\Psi }{\hat \Phi _p}(b;c;z) = {\cal M}[{\hat f_{b,c}}(t:z;p):b]. Differentiating f^b,c(t:z;p){\hat f_{b,c}}(t:z;p) with regard to t obtain ddt{f^b,c(t:z;p)}=(cb1)(1t)cb2eztH(1t)ξΨη(pt(1t))+z(1t)cb1eztH(1t)ξΨη(pt(1t))+p1t2(1t)cb3eztH(1t)ξΨη[(αi+βi,αi)1,ξ(κj+μj,κj)1,η|pt(1t)]2p1t(1t)cb3eztH(1t)ξΨη[(αi+βi,αi)1,ξ(κj+μj,κj)1,η|pt(1t)].\eqalign{& {d \over {dt}}\left\{ {{{\hat f}_{b,c}}(t:z;p)} \right\} = - (c - b - 1)(1 - t{)^{c - b - 2}}{e^{zt}}H(1 - t{) _\xi }{\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right) \cr & + z{(1 - t)^{c - b - 1}}{e^{zt}}H(1 - t{) _\xi }{\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right) \cr & + p{1 \over {{t^2}}}{(1 - t)^{c - b - 3}}{e^{zt}}H(1 - t{) _\xi }{\Psi _\eta }\left[ {\matrix{{{{({\alpha _i} + {\beta _i},{\alpha _i})}_{1,\xi }}} & {} & {} \cr {{{({\kappa _j} + {\mu _j},{\kappa _j})}_{1,\eta }}} & {} & {} \cr } | {{ - p} \over {t(1 - t)}}} \right] \cr & - 2p{1 \over t}{(1 - t)^{c - b - 3}}{e^{zt}}H(1 - t{) _\xi }{\Psi _\eta }\left[ {\matrix{{{{({\alpha _i} + {\beta _i},{\alpha _i})}_{1,\xi }}} & {} & {} \cr {{{({\kappa _j} + {\mu _j},{\kappa _j})}_{1,\eta }}} & {} & {} \cr } | {{ - p} \over {t(1 - t)}}} \right]. \cr} Since {f'(t):b}=(b1){f(t):b1},{\cal M}\left\{ {{f^'}(t):b} \right\} = - (b - 1){\cal M}\left\{ {f(t):b - 1} \right\}, we get (b1)B(b1,cb+1)ΨΦ^p(b1;c;z)=(cb1)B(b,cb1)ΨΦ^p(b;c1;z)zB(b,cb)ΨΦ^p(b;c;z)pB(b2,cb2)ΨΦp[(αi+βi,αi)1,ξ(κj+μj,κj)1,η|b2;c4;z]+2pB(b1,cb2)ΨΦp[(αi+βi,αi)1,ξ(κj+μj,κj)1,η|b1;c3;z],\eqalign{& (b - 1)B{(b - 1,c - b + 1)^\Psi }{{\hat \Phi }_p}(b - 1;c;z) \cr & = (c - b - 1)B{(b,c - b - 1)^\Psi }{{\hat \Phi }_p}(b;c - 1;z) \cr & - zB{(b,c - b)^\Psi }{{\hat \Phi }_p}(b;c;z) \cr & - pB{(b - 2,c - b - 2)^\Psi }{\Phi _p}\left[ {\matrix{{{{({\alpha _i} + {\beta _i},{\alpha _i})}_{1,\xi }}} & {} & {} \cr {{{({\kappa _j} + {\mu _j},{\kappa _j})}_{1,\eta }}} & {} & {} \cr } | b - 2;c - 4;z} \right] \cr & + 2pB{(b - 1,c - b - 2)^\Psi }{\Phi _p}\left[ {\matrix{{{{({\alpha _i} + {\beta _i},{\alpha _i})}_{1,\xi }}} & {} & {} \cr {{{({\kappa _j} + {\mu _j},{\kappa _j})}_{1,\eta }}} & {} & {} \cr } | b - 1;c - 3;z} \right], \cr} which completes the proof.

In the following theorems we obtain the Mellin transform formulas of the ξΨη-Gauss and ξ Ψη-confluent hypergeometric functions.

Theorem 15

The following equality is provided for Re(s) > 0: [ΨF^p(a,b;c;z):s]=ΨΓ^(s)B(b+s,c+sb)B(b,cb)2F1(a,b+s;c+2s;z).{\cal M}\left[ {^\Psi {{\hat F}_p}(a,b;c;z):s} \right] = {{{^\Psi \hat \Gamma (s)B(b + s,c + s - b)} \over {B(b,c - b)}}_2}{F_1}(a,b + s;c + 2s;z).

Proof

By applying Mellin transformation to equality (9), we get [ΨF^p(a,b;c;z):s]=0ps1[ΨF^p(a,b;c;z)]dp=0ps1n=0ΨB^p(b+n,cb)B(b,cb)(a)nznn!dp=1B(b,cb)01tb1(1t)cb1(1zt)a0ps1ξΨη(pt(1t))dpdt.\eqalign{& {\cal M}{[^\Psi }{{\hat F}_p}(a,b;c;z):s] = \int_0^\infty {p^{s - 1}}\left[ {^\Psi {{\hat F}_p}(a,b;c;z)} \right]dp \cr & = \int_0^\infty {p^{s - 1}}\sum\limits_{n = 0}^\infty {{^\Psi {{\hat B}_p}(b + n,c - b)} \over {B(b,c - b)}}{(a)_n}{{{z^n}} \over {n!}}dp \cr & = {1 \over {B(b,c - b)}}\int_0^1 {t^{b - 1}}{(1 - t)^{c - b - 1}}{(1 - zt)^{ - a}}\int_0^\infty {p^{s - 1}}_\xi {\Psi _\eta }\left( {{{ - p} \over {t(1 - t)}}} \right)dpdt. \cr} Substituting u=pt(1t)u = {p \over {t(1 - t)}} in the above equation gives us 0ps1ξΨη(pt(1t))dp=ts(1t)sΨΓ^(s).\int_0^\infty {p^{s - 1}}_\xi {\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right)dp = {t^s}{(1 - t)^s}{ ^\Psi }\hat \Gamma (s). Thus, we get [ΨF^p(a,b;c;z):s]=ΨΓ^(s)B(b+s,c+sb)B(b,cb)2F1(a,b+s;c+2s;z).{\cal M}\left[ {^\Psi {{\hat F}_p}(a,b;c;z):s} \right] = {{{^\Psi \hat \Gamma (s)B(b + s,c + s - b)} \over {B(b,c - b)}}_2}{F_1}(a,b + s;c + 2s;z).

Corollary 16

The following equality is provided for Re(s) > 0: ΨF^p(a,b;c;z)=12πii+iΨΓ^(s)B(b+s,c+sb)B(b,cb)2F1(a,b+s;c+2s;z)psds.^\Psi {\hat F_p}(a,b;c;z) = {1 \over {2\pi i}}\int_{ - i\infty }^{ + i\infty } {{{^\Psi \hat \Gamma (s)B(b + s,c + s - b)} \over {B(b,c - b)}}_2}{F_1}(a,b + s;c + 2s;z){p^{ - s}}ds.

Theorem 17

The following equality is provided for Re(s) > 0: [ΨΦ^p(b;c;z):s]=ΨΓ^(s)B(b+s,c+sb)B(b,cb)Φ(b+s;c+2s;z).{\cal M}\left[ {^\Psi {{\hat \Phi }_p}(b;c;z):s} \right] = {{^\Psi \hat \Gamma (s)B(b + s,c + s - b)} \over {B(b,c - b)}}\Phi (b + s;c + 2s;z).

Proof

By applying Mellin transformation to equality (10), we get [ΨΦ^p(b;c;z):s]=0ps1[ΨΦ^p(b;c;z)]dp=0ps1n=0ΨB^p(b+n,cb)B(b,cb)znn!dp=1B(b,cb)01tb1(1t)cb1ezt[0ps1ξΨη(pt(1t))dp]dt.\eqalign{& {\cal M}{[^\Psi }{{\hat \Phi }_p}(b;c;z):s] = \int_0^\infty {p^{s - 1}}\left[ {^\Psi {{\hat \Phi }_p}(b;c;z)} \right]dp \cr & = \int_0^\infty {p^{s - 1}}\sum\limits_{n = 0}^\infty {{^\Psi {{\hat B}_p}(b + n,c - b)} \over {B(b,c - b)}}{{{z^n}} \over {n!}}dp \cr & = {1 \over {B(b,c - b)}}\int_0^1 {t^{b - 1}}{(1 - t)^{c - b - 1}}{e^{zt}}\left[ {\int_0^\infty {p^{s - 1}}_\xi {\Psi _\eta }\left( {{{ - p} \over {t(1 - t)}}} \right)dp} \right]dt. \cr} Substituting u=pt(1t)u = {p \over {t(1 - t)}} in the above equation we get 0ps1ξΨη(pt(1t))dp=ts(1t)sΨΓ^(s).\int_0^\infty {p^{s - 1}}_\xi {\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right)dp = {t^s}{(1 - t)^s}{ ^\Psi }\hat \Gamma (s). Thus, we have [ΨΦ^p(b;c;z):s]=ΨΓ^(s)B(b+s,c+sb)B(b,cb)Φ(b+s;c+2s;z).{\cal M}\left[ {^\Psi {{\hat \Phi }_p}(b;c;z):s} \right] = {{^\Psi \hat \Gamma (s)B(b + s,c + s - b)} \over {B(b,c - b)}}\Phi (b + s;c + 2s;z).

Corollary 18

For Re(s) > 0, we have the following equality:ΨΦ^p(b;c;z)=12πii+iΨΓ^(s)B(b+s,c+sb)B(b,cb)Φ(b+s;c+2s;z)psds.^\Psi {\hat \Phi _p}(b;c;z) = {1 \over {2\pi i}}\int_{ - i\infty }^{ + i\infty } {{^\Psi \hat \Gamma (s)B(b + s,c + s - b)} \over {B(b,c - b)}}\Phi (b + s;c + 2s;z){p^{ - s}}ds.

The following two theorems are about the transformation formulas of ξ Ψη-Gauss and ξΨη-confluent hypergeometric functions.

Theorem 19

The following equality holds true:ΨF^p(a,b;c;z)=(1z)a[ΨF^p(a,cb;b;zz1)].^\Psi {\hat F_p}(a,b;c;z) = (1 - z{)^{ - a}}\left[ {^\Psi {{\hat F}_p}\left( {a,c - b;b;{z \over {z - 1}}} \right)} \right].

Proof

By writing [1z(1t)]a=(1z)a(1+zt1z)a{\left[ {1 - z(1 - t)} \right]^{ - a}} = (1 - z{)^{ - a}}{\left( {1 + {{zt} \over {1 - z}}} \right)^{ - a}} and replacing t → 1 − t in (9), we obtain ΨF^p(a,b;c;z)=(1z)aB(b,cb)01tcb1(1t)b1(1ztz1)aξΨη(pt(1t))dt.^\Psi {\hat F_p}(a,b;c;z) = {{{{(1 - z)}^{ - a}}} \over {B(b,c - b)}}\int_0^1 {t^{c - b - 1}}{(1 - t)^{b - 1}}{\left( {1 - {{zt} \over {z - 1}}} \right)^{ - a}}_\xi {\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right)dt. Then we have ΨF^p(a,b;c;z)=(1z)a[ΨF^p(a,cb;b;zz1)],^\Psi {\hat F_p}(a,b;c;z) = (1 - z{)^{ - a}}\left[ {^\Psi {{\hat F}_p}\left( {a,c - b;b;{z \over {z - 1}}} \right)} \right], which is the result.

Theorem 20

The following equality holds true:ΨΦ^p(b;c;z)=ez[ΨΦ^p(cb;b;z)].^\Psi {\hat \Phi _p}(b;c;z) = {e^z}\left[ {^\Psi {{\hat \Phi }_p}(c - b;b; - z)} \right].

Proof

From the definition of confluent hypergeometric function, we have ΨΦ^p(b;c;z)=n=0ΨB^p(b+n,cb)B(b,cb)znn!=1B(b,cb)01tb+n1(1t)cb1eztξΨη(pt(1t))dt.\eqalign{& ^\Psi {{\hat \Phi }_p}(b;c;z) = \sum\limits_{n = 0}^\infty {{^\Psi {{\hat B}_p}(b + n,c - b)} \over {B(b,c - b)}}{{{z^n}} \over {n!}} \cr & = {1 \over {B(b,c - b)}}\int_0^1 {t^{b + n - 1}}{(1 - t)^{c - b - 1}}{e^{zt}}_\xi {\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right)dt. \cr} Replacing t = 1 − u in (14), we obtain ΨΦ^p(b;c;z)=1B(b,cb)01ucb1(1u)b+n1ez(1u)ξΨη(pu(1u))du=ez[ΨΦ^p(cb;b;z)],\eqalign{& ^\Psi {{\hat \Phi }_p}(b;c;z) = {1 \over {B(b,c - b)}}\int_0^1 {u^{c - b - 1}}{(1 - u)^{b + n - 1}}{e^{z(1 - u)}}_\xi {\Psi _\eta }\left( {{{ - p} \over {u(1 - u)}}} \right)du \cr & = {e^z}\left[ {^\Psi {{\hat \Phi }_p}(c - b;b; - z)} \right], \cr} which gives the result.

The following theorems are about the differential and difference relations for ξ Ψη-Gauss hypergeometric and ξ Ψη-confluent hypergeometric functions.

Theorem 21

The following relations hold true:Δa[ΨF^p(a,b;c;z)]=zbcΨF^p(a+1,b+1;c+1;z)\quad {\Delta _a}\left[ {^\Psi {{\hat F}_p}(a,b;c;z)} \right] = z{b \over c}{ ^\Psi }{\hat F_p}(a + 1,b + 1;c + 1;z)aΔa[ΨF^p(a,b;c;z)]=zddz{ΨF^p(a,b;c;z)}\quad a{\Delta _a}\left[ {^\Psi {{\hat F}_p}(a,b;c;z)} \right] = z{d \over {dz}}\left\{ {^\Psi {{\hat F}_p}(a,b;c;z)} \right\}bΔb[ΨΦ^p(b;c+1;z)]=cΔc[ΨΦ^p(b;c;z)]\quad b{\Delta _b}\left[ {^\Psi {{\hat \Phi }_p}(b;c + 1;z)} \right] = - c{\Delta _c}\left[ {^\Psi {{\hat \Phi }_p}(b;c;z)} \right]ddz{ΨΦ^p(b;c;z)}=bcΨΦ^p(b;c+1;z)Δc[ΨΦ^p(b;c;z)]\quad {d \over {dz}}\left\{ {^\Psi {{\hat \Phi }_p}(b;c;z)} \right\} = {b \over c}{ ^\Psi }{\hat \Phi _p}(b;c + 1;z) - {\Delta _c}\left[ {^\Psi {{\hat \Phi }_p}(b;c;z)} \right]where Δαdenotes the difference operator defined byΔαf(α,)=f(α+1,)f(α,).{\Delta _\alpha }f(\alpha , \ldots ) = f(\alpha + 1, \ldots ) - f(\alpha , \ldots ).

Proof

It is seen from (9) and the difference operator Δa that ΔaΨF^(a,b;c;z)=ΨF^(a+1,b;c;z)ΨF^(a,b;c;z)=zB(b,cb)01tb(1t)cb1(1zt)a1ξΨη(pt(1t))dt.\eqalign{& {\Delta _a}^\Psi \hat F(a,b;c;z{) = ^\Psi }\hat F(a + 1,b;c;z){ - ^\Psi }\hat F(a,b;c;z) \cr & = {z \over {B(b,c - b)}}\int_0^1 {t^b}{(1 - t)^{c - b - 1}}{(1 - zt)^{ - a - 1}}_\xi {\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right)dt. \cr} If we write a + 1,b + 1 and c + 1 instead of a,b and c in equation (9), we get the following equation: ΨF^(a+1,b+1;c+1;z)=1B(b+1,cb)01tb(1t)cb1(1zt)a1ξΨη(pt(1t))dt.^\Psi \hat F(a + 1,b + 1;c + 1;z) = {1 \over {B(b + 1,c - b)}}\int_0^1 {t^b}{(1 - t)^{c - b - 1}}{(1 - zt)^{ - a - 1}}_\xi {\Psi _\eta }\left( { - {p \over {t(1 - t)}}} \right)dt. Now using (11) and (20) in (19) we get (15). Using differentiation formula (12) proves (16). Using the difference operator and (10), we obtain (17). Using differentiation formula (13) with n = 1, and considering (17) gives us (18).

Results and Recommendations

In this study, we introduced new generalizations of gamma, beta, Gauss and confluent hypergeometric functions with the help of Fox-Wright function. We also obtained some of their integral representations, Mellin transformations, derivative formulas, transformation formulas and reduction relations.

When the special cases of these functions are examined, it is seen that these functions are the generalizations of the following predefined functions which can be found in the literature:

For p = 0: Γ(x)=ΨΓ0[(1,0)1,1(1,0)1,1|x],B(x,y)=ΨB0[(1,0)1,1(1,0)1,1|x,y],F(a,b;c;z)=ΨF0[(1,0)1,1(1,0)1,1|a,b;c;z],Φ(b;c;z)=ΨΦ0[(1,0)1,1(1,0)1,1|b;c;z].\eqalign{& \Gamma (x{) = ^\Psi }{\Gamma _0}\left[ {\matrix{{{{(1,0)}_{1,1}}} \cr {{{(1,0)}_{1,1}}} \cr } |x} \right], \cr & B(x,y{) = ^\Psi }{B_0}\left[ {\matrix{{{{(1,0)}_{1,1}}} & {} & {} \cr {{{(1,0)}_{1,1}}} & {} & {} \cr } |x,y} \right], \cr & F(a,b;c;z{) = ^\Psi }{F_0}\left[ {\matrix{{{{(1,0)}_{1,1}}} \cr {{{(1,0)}_{1,1}}} \cr } |a,b;c;z} \right], \cr & \Phi (b;c;z{) = ^\Psi }{\Phi _0}\left[ {\matrix{{{{(1,0)}_{1,1}}} \cr {{{(1,0)}_{1,1}}} \cr } |b;c;z} \right]. \cr} For p ≠ 0: Γp(x)=ΨΓp[(1,0)1,1(1,0)1,1|x],Bp(x,y)=ΨBp[(1,0)1,1(1,0)1,1|x,y],Fp(a,b;c;z)=ΨFp[(1,0)1,1(1,0)1,1|a,b;c;z],Φp(b;c;z)=ΨΦp[(1,0)1,1(1,0)1,1|b;c;z].\eqalign{& {\Gamma _p}(x{) = ^\Psi }{\Gamma _p}\left[ {\matrix{{{{(1,0)}_{1,1}}} \cr {{{(1,0)}_{1,1}}} \cr } |x} \right], \cr & {B_p}(x,y{) = ^\Psi }{B_p}\left[ {\matrix{{{{(1,0)}_{1,1}}} & {} & {} \cr {{{(1,0)}_{1,1}}} & {} & {} \cr } |x,y} \right], \cr & {F_p}(a,b;c;z{) = ^\Psi }{F_p}\left[ {\matrix{{{{(1,0)}_{1,1}}} \cr {{{(1,0)}_{1,1}}} \cr } |a,b;c;z} \right], \cr & {\Phi _p}(b;c;z{) = ^\Psi }{\Phi _p}\left[ {\matrix{{{{(1,0)}_{1,1}}} \cr {{{(1,0)}_{1,1}}} \cr } |b;c;z} \right]. \cr} And also for p ≠ 0: Γp(α,β)(x)=Γ(β)Γ(α)ΨΓp[(α,1)1,1(β,1)1,1|x],Bp(α,β)(x,y)=Γ(β)Γ(α)ΨBp[(α,1)1,1(β,1)1,1|x,y],Fp(α,β)(a,b;c;z)=Γ(β)Γ(α)ΨFp[(α,1)1,1(β,1)1,1|a,b;c;z],Φp(α,β)(b;c;z)=Γ(β)Γ(α)ΨΦp[(α,1)1,1(β,1)1,1|b;c;z],\eqalign{& \Gamma _p^{(\alpha ,\beta )}(x) = {{{\Gamma (\beta )} \over {\Gamma (\alpha )}}^\Psi }{\Gamma _p}\left[ {\matrix{{{{(\alpha ,1)}_{1,1}}} \cr {{{(\beta ,1)}_{1,1}}} \cr } |x} \right], \cr & B_p^{(\alpha ,\beta )}(x,y) = {{{\Gamma (\beta )} \over {\Gamma (\alpha )}}^\Psi }{B_p}\left[ {\matrix{{{{(\alpha ,1)}_{1,1}}} \cr {{{(\beta ,1)}_{1,1}}} \cr } |x,y} \right], \cr & F_p^{(\alpha ,\beta )}(a,b;c;z) = {{{\Gamma (\beta )} \over {\Gamma (\alpha )}}^\Psi }{F_p}\left[ {\matrix{{{{(\alpha ,1)}_{1,1}}} \cr {{{(\beta ,1)}_{1,1}}} \cr } |a,b;c;z} \right], \cr & \Phi _p^{(\alpha ,\beta )}(b;c;z) = {{{\Gamma (\beta )} \over {\Gamma (\alpha )}}^\Psi }{\Phi _p}\left[ {\matrix{{{{(\alpha ,1)}_{1,1}}} \cr {{{(\beta ,1)}_{1,1}}} \cr } |b;c;z} \right], \cr} where Γ,B,F and Φ are the classic gamma, beta, Gauss and confluent hypergeometric functions; Γp, Bp, Fp and Φp are the functions defined in [7, 8, 10]; Γp(α,β)\Gamma _p^{(\alpha ,\beta )} , Bp(α,β)B_p^{(\alpha ,\beta )} , Fp(α,β)F_p^{(\alpha ,\beta )} and Φp(α,β)\Phi _p^{(\alpha ,\beta )} are the functions defined in [25].

Besides, the generalized beta function described in this study can be used to define similar generalizations of multivariate hypergeometric functions, which also known as Appell, Lauricella, Horn and Srivastava functions (see [3, 5] and the references therein). Further properties of these functions can be examined and they can also be used in fractional theory (see for example [2, 4, 30] and the references therein).

eISSN:
2444-8656
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics