Open Access

System Analysis of HIV Infection Model with CD4+T under Non-Singular Kernel Derivative


Cite

Introduction

Over the past 50 years, the Human Immunodeficiency Virus (HIV) has become a lethal disease that affects the world in a global sense. HIV is a virus that generates infection by targeting immune system cells and causes fatal consequences if infection progresses. According to the researches conducted by the World Health Organization (WHO) worldwide, approximately 35 million people were affected by this disease, 940000 people died from HIV-related causes at the end of 2017. These statistics are inevitably increasing in spite of all the precaution taken over the years.

For this reason, many scientists worldwide are doing various researches in order to prevent such deadly diseases. Mathematical modeling is the most important part of these researches. With the help of mathematical models, researchers obtain very crucial information about the spread of diseases and measures to be taken [1, 2, 3].

On the other hand, fractional calculus has become a very important tool in mathematical modeling as in many other fields in recent years [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].

Furthermore, there are many studies in the literature, which are modeled by the fractional concept related to diseases and bad habits [21, 22, 23, 24, 25, 26, 27, 28].

In this paper, by the above motivation, we will handle an HIV infection model of CD4+T cells, considered in [1], for investigating the system components under the effect of non-singular kernel derivative which is defined in [12].

For this purpose, the rest of the paper is divided into 4 Sections. In Section 2, some basic necessary definitions and theorem for Atangana-Baleanu (AB) derivative, which is also named as non-singular Mittag-Leffler kernel derivative, are given. Section 3 is devoted to the model construction. In Section 4, the existence and uniqueness of the solutions for the HIV infection model in the frame of the AB fractional derivative are given. Finally, in Section 5, our results are briefly summarized.

Basic definitions and preliminaries
Definition 1

Let f ∈ H1 (a,b), a < b be a function and υ ∈ [0,1]. The Atangana-Baleanu derivative in Caputo type of order υ of f is given by [12]: aABCDtυ[f(t)]=B(υ)1υatf'(x)Eυ[υ(tx)υ1υ]dx._a^{ABC}D_t^\upsilon \left[ {f\left( t \right)} \right] = {{B\left( \upsilon \right)} \over {1 - \upsilon }}\int\limits_a^t {f^'}\left( x \right){E_\upsilon }\left[ { - \upsilon {{{{\left( {t - x} \right)}^\upsilon }} \over {1 - \upsilon }}} \right]dx.

Definition 2

Let g ∈ H1 (a,b), a < b be a function and υ ∈ [0,1]. The Atangana-Baleanu derivative in Riemann-Liouville type of order υ of f is defined by [12]: aABRDtυ[f(t)]=B(υ)1υddtatg(x)Eυ[υ(tx)υ1υ]dx._a^{ABR}D_t^\upsilon \left[ {f\left( t \right)} \right] = {{B\left( \upsilon \right)} \over {1 - \upsilon }}{d \over {dt}}\int\limits_a^t g\left( x \right){E_\upsilon }\left[ { - \upsilon {{{{\left( {t - x} \right)}^\upsilon }} \over {1 - \upsilon }}} \right]dx.

Definition 3

The fractional integral related to the fractional derivative is given by [12]: aABItυ[f(t)]=1υB(υ)f(t)+υB(υ)Γ(υ)atf(λ)(tλ)υ1dλ._a^{AB}I_t^\upsilon \left[ {f\left( t \right)} \right] = {{1 - \upsilon } \over {B\left( \upsilon \right)}}f\left( t \right) + {\upsilon \over {B\left( \upsilon \right)\Gamma \left( \upsilon \right)}}\int\limits_a^t f\left( \lambda \right){\left( {t - \lambda } \right)^{\upsilon - 1}}d\lambda .

Model description

In this section, the fractional order HIV infection model of CD4+T cells by the AB fractional derivative is constructed according to the reference in [1].

This system can be modeled by the three fractional order nonlinear differential equations as follow: 0ABCDtυ(T(t))=qυ¯T(t)+rT(t)(1T(t)+I(t)Tmax)kV(t)T(t),0ABCDtυ(I(t))=kV(t)T(t)βI(t),0ABCDtυ(V(t))=μβI(t)γV(t),\eqalign{& _0^{ABC}D_t^\upsilon \left( {T\left( t \right)} \right) = q - \overline \upsilon T\left( t \right) + rT\left( t \right)\left( {1 - {{T\left( t \right) + I\left( t \right)} \over {{T_{\max }}}}} \right) - kV\left( t \right)T\left( t \right), \cr & _0^{ABC}D_t^\upsilon \left( {I\left( t \right)} \right) = kV\left( t \right)T\left( t \right) - \beta I\left( t \right), \cr & _0^{ABC}D_t^\upsilon \left( {V\left( t \right)} \right) = \mu \beta I\left( t \right) - \gamma V\left( t \right), \cr} where, T (t) is the number of healty CD4+T cells at time t, I (t) is the concentration of infected CD4+T cells by the HIV viruses at time t, V (t) is the number of HIV viruses at time t and υ¯, r, Tmax, k, β, µ and γ are the estimated data from real world applications.

Existence and uniqueness of the solutions

In this section, the existence and uniqueness of the solutions to the model (4) is described and proved under the effect of AB fractional derivative.

For this purpose, first of all, we apply AB fractional integral in Eq. (3) on both sides of the system and we get T(t)T(0)=1υB(υ){qυ¯T(t)+rT(t)(1T(t)+I(t)Tmax)kV(t)T(t)}+υB(υ)Γ(υ)0t(ty)υ1{qυ¯T(y)+rT(y)(1T(y)+I(y)Tmax)kV(y)T(y)}dy,I(t)I(0)=1υB(υ){kV(t)T(t)βI(t)}+υB(υ)Γ(υ)0t(ty)υ1{kV(y)T(y)βI(y)}dy,V(t)V(0)=1υB(υ){μβI(t)γV(t)}+υB(υ)Γ(υ)0t(ty)υ1{μβI(y)γV(y)}dy.\eqalign{& T\left( t \right) - T\left( 0 \right) = {{1 - \upsilon } \over {B\left( \upsilon \right)}}\left\{ {q - \overline \upsilon T\left( t \right) + rT\left( t \right)\left( {1 - {{T\left( t \right) + I\left( t \right)} \over {{T_{\max }}}}} \right) - kV\left( t \right)T\left( t \right)} \right\} \cr & + {\upsilon \over {B\left( \upsilon \right)\Gamma \left( \upsilon \right)}}\mathop {\mathop {\int }\limits_0 }\limits^t {\left( {t - y} \right)^{\upsilon - 1}}\left\{ {q - \overline \upsilon T\left( y \right) + rT\left( y \right)\left( {1 - {{T\left( y \right) + I\left( y \right)} \over {{T_{\max }}}}} \right) - kV\left( y \right)T\left( y \right)} \right\}dy, \cr & I\left( t \right) - I\left( 0 \right) = {{1 - \upsilon } \over {B\left( \upsilon \right)}}\left\{ {kV\left( t \right)T\left( t \right) - \beta I\left( t \right)} \right\} + {\upsilon \over {B\left( \upsilon \right)\Gamma \left( \upsilon \right)}}\mathop {\mathop {\int }\limits_0 }\limits^t {\left( {t - y} \right)^{\upsilon - 1}}\left\{ {kV\left( y \right)T\left( y \right) - \beta I\left( y \right)} \right\}dy, \cr & V\left( t \right) - V\left( 0 \right) = {{1 - \upsilon } \over {B\left( \upsilon \right)}}\left\{ {\mu \beta I\left( t \right) - \gamma V\left( t \right)} \right\} + {\upsilon \over {B\left( \upsilon \right)\Gamma \left( \upsilon \right)}}\mathop {\mathop {\int }\limits_0 }\limits^t {\left( {t - y} \right)^{\upsilon - 1}}\left\{ {\mu \beta I\left( y \right) - \gamma V\left( y \right)} \right\}dy. \cr}

We can choose our kernels s(t,T (t)), s(t,I (t)), s(t,V (t)) for simplifying the demonstration of the equation (5) as follows, s(t,T(t))=qυ¯T(t)+rT(t)(1T(t)+I(t)Tmax)kV(t)T(t),s(t,I(t))=kV(t)T(t)βI(t),s(t,V(t))=μβI(t)γV(t).\eqalign{& s\left( {t,T\left( t \right)} \right) = q - \overline \upsilon T\left( t \right) + rT\left( t \right)\left( {1 - {{T\left( t \right) + I\left( t \right)} \over {{T_{\max }}}}} \right) - kV\left( t \right)T\left( t \right), \cr & s\left( {t,I\left( t \right)} \right) = kV\left( t \right)T\left( t \right) - \beta I\left( t \right), \cr & s\left( {t,V\left( t \right)} \right) = \mu \beta I\left( t \right) - \gamma V\left( t \right){\rm{.}} \cr}

At first, we need to be able to identify an operator. We will then show that this operator is compact. Now, we consider the operator K : H → H and then we get KT(t)=1υB(υ)s(t,T(t))+υB(υ)Γ(υ)0t(ty)υ1s(y,T(y))dy,KI(t)=1υB(υ)s(t,I(t))+υB(υ)Γ(υ)0t(ty)υ1s(y,I(y))dy,KV(t)=1υB(υ)s(t,V(t))+υB(υ)Γ(υ)0t(ty)υ1s(y,V(y))dy.\eqalign{& KT\left( t \right) = {{1 - \upsilon } \over {B\left( \upsilon \right)}}s\left( {t,T\left( t \right)} \right) + {\upsilon \over {B\left( \upsilon \right)\Gamma \left( \upsilon \right)}}\mathop {\mathop {\int }\limits_0 }\limits^t {\left( {t - y} \right)^{\upsilon - 1}}s\left( {y,T\left( y \right)} \right)dy, \cr & KI\left( t \right) = {{1 - \upsilon } \over {B\left( \upsilon \right)}}s\left( {t,I\left( t \right)} \right) + {\upsilon \over {B\left( \upsilon \right)\Gamma \left( \upsilon \right)}}\mathop {\mathop {\int }\limits_0 }\limits^t {\left( {t - y} \right)^{\upsilon - 1}}s\left( {y,I\left( y \right)} \right)dy, \cr & KV\left( t \right) = {{1 - \upsilon } \over {B\left( \upsilon \right)}}s\left( {t,V\left( t \right)} \right) + {\upsilon \over {B\left( \upsilon \right)\Gamma \left( \upsilon \right)}}\mathop {\mathop {\int }\limits_0 }\limits^t {\left( {t - y} \right)^{\upsilon - 1}}s\left( {y,V\left( y \right)} \right)dy. \cr}

Lemma 1

Let M ⊂ H be bounded in this way, we can find n,r,l > 0 such thatT(t2)T(t1)nt2t1foreveryTM,I(t2)I(t1)rt2t1foreveryIM,V(t2)V(t1)lt2t1foreveryVM.\eqalign{& \left\| {T\left( {{t_2}} \right) - T\left( {{t_1}} \right)} \right\| \le n\left\| {{t_2} - {t_1}} \right\|{{for every}}T \in M, \cr & \left\| {I\left( {{t_2}} \right) - I\left( {{t_1}} \right)} \right\| \le r\left\| {{t_2} - {t_1}} \right\|\;{{for every}}I \in M, \cr & \left\| {V\left( {{t_2}} \right) - V\left( {{t_1}} \right)} \right\| \le l\left\| {{t_2} - {t_1}} \right\|{{for every}}V \in M{\rm{.}} \cr} ThenK(M)¯\overline {K\left( M \right)}is compact.

Proof

Let N=max{1υB(υ)+s(t,T(t))}N = \max \left\{ {{{1 - \upsilon } \over {B\left( \upsilon \right)}} + s\left( {t,T\left( t \right)} \right)} \right\} and 0 ≤ T (t) ≤ P. For T (t) ∈ M, then we have the followings KT(t)=1υB(υ)s(t,T(t))+υB(υ)Γ(υ)0t(ty)υ1s(y,T(y))dy1υB(υ)N+υB(υ)NtυΓ(υ+1).\eqalign{ & \left\| {KT\left( t \right)} \right\| = \left\| {{{1 - \upsilon } \over {B\left( \upsilon \right)}}s\left( {t,T\left( t \right)} \right) + {\upsilon \over {B\left( \upsilon \right)\Gamma \left( \upsilon \right)}}\mathop {\mathop {\int }\limits_0 }\limits^t {{\left( {t - y} \right)}^{\upsilon - 1}}s\left( {y,T\left( y \right)} \right)dy} \right\| \cr & \le {{1 - \upsilon } \over {B\left( \upsilon \right)}}N + {\upsilon \over {B\left( \upsilon \right)}}N{{{t^\upsilon }} \over {\Gamma \left( {\upsilon + 1} \right)}}. \cr}

Let R=max{1υB(υ)+s(t,I(t))}R = \max \left\{ {{{1 - \upsilon } \over {B\left( \upsilon \right)}} + s\left( {t,I\left( t \right)} \right)} \right\} and 0 ≤ I (t) ≤ Q. For I (t) ∈ MKI(t)=1υB(υ)s(t,I(t))+υB(υ)Γ(υ)0t(ty)υ1s(y,I(y))dy1υB(υ)R+υB(υ)RtυΓ(υ+1).\eqalign{& \left\| {KI\left( t \right)} \right\| = \left\| {{{1 - \upsilon } \over {B\left( \upsilon \right)}}s\left( {t,I\left( t \right)} \right) + {\upsilon \over {B\left( \upsilon \right)\Gamma \left( \upsilon \right)}}\mathop {\mathop {\int }\limits_0 }\limits^t {{\left( {t - y} \right)}^{\upsilon - 1}}s\left( {y,I\left( y \right)} \right)dy} \right\| \cr & \le {{1 - \upsilon } \over {B\left( \upsilon \right)}}R + {\upsilon \over {B\left( \upsilon \right)}}R{{{t^\upsilon }} \over {\Gamma \left( {\upsilon + 1} \right)}}. \cr}

In a similar way, S=max{1υB(υ)+s(t,V(t))}S = \max \left\{ {{{1 - \upsilon } \over {B\left( \upsilon \right)}} + s\left( {t,V\left( t \right)} \right)} \right\} and 0 ≤ V (t) ≤ S. For V (t) ∈ MKV(t)=1υB(υ)s(t,V(t))+υB(υ)Γ(υ)0t(ty)υ1s(y,V(y))dy1υB(υ)S+υB(υ)StυΓ(υ+1).\eqalign{& \left\| {KV\left( t \right)} \right\| = \left\| {{{1 - \upsilon } \over {B\left( \upsilon \right)}}s\left( {t,V\left( t \right)} \right) + {\upsilon \over {B\left( \upsilon \right)\Gamma \left( \upsilon \right)}}\mathop {\mathop {\int }\limits_0 }\limits^t {{\left( {t - y} \right)}^{\upsilon - 1}}s\left( {y,V\left( y \right)} \right)dy} \right\| \cr & \le {{1 - \upsilon } \over {B\left( \upsilon \right)}}S + {\upsilon \over {B\left( \upsilon \right)}}S{{{t^\upsilon }} \over {\Gamma \left( {\upsilon + 1} \right)}}. \cr} From the Eqs. (7)(9), the function K is bounded.

Now, we will consider t1< t2 and T (t) ∈ M. For ɛ > 0, if |t2t1| < δ then we obtain KT(t2)KT(t1)=1υB(υ)s(t2,T(t2))+υB(υ)Γ(υ)0t2(t2y)υ1s(y,T(y))dy1υB(υ)s(t1,T(t1))υB(υ)Γ(υ)0t1(t1y)υ1s(y,T(y))dy1υB(υ)s(t2,T(t2))s(t1,T(t1))+υB(υ)Γ(υ)0t2(t2y)υ1s(y,T(y))dyυB(υ)Γ(υ)0t1(t1y)υ1s(y,T(y))dy1υB(υ)s(t2,T(t2))s(t1,T(t1))+υPB(υ)Γ(υ){0t2(t2y)υ1dy0t1(t1y)υ1},\eqalign{& \left\| {KT\left( {{t_2}} \right) - KT\left( {{t_1}} \right)} \right\| = \left\| {{{1 - \upsilon } \over {B\left( \upsilon \right)}}s\left( {{t_2},T\left( {{t_2}} \right)} \right) + {\upsilon \over {B\left( \upsilon \right)\Gamma \left( \upsilon \right)}}\mathop {\mathop {\int }\limits_0 }\limits^{{t_2}} {{\left( {{t_2} - y} \right)}^{\upsilon - 1}}s\left( {y,T\left( y \right)} \right)dy} \right. \cr & \left. { - {{1 - \upsilon } \over {B\left( \upsilon \right)}}s\left( {{t_1},T\left( {{t_1}} \right)} \right) - {\upsilon \over {B\left( \upsilon \right)\Gamma \left( \upsilon \right)}}\mathop {\mathop {\int }\limits_0 }\limits^{{t_1}} {{\left( {{t_1} - y} \right)}^{\upsilon - 1}}s\left( {y,T\left( y \right)} \right)dy} \right\| \cr & \le {{1 - \upsilon } \over {B\left( \upsilon \right)}}\left\| {s\left( {{t_2},T\left( {{t_2}} \right)} \right) - s\left( {{t_1},T\left( {{t_1}} \right)} \right)} \right\| \cr & + \left\| {{\upsilon \over {B\left( \upsilon \right)\Gamma \left( \upsilon \right)}}\mathop {\mathop {\int }\limits_0 }\limits^{{t_2}} {{\left( {{t_2} - y} \right)}^{\upsilon - 1}}s\left( {y,T\left( y \right)} \right)dy - {\upsilon \over {B\left( \upsilon \right)\Gamma \left( \upsilon \right)}}\mathop {\mathop {\int }\limits_0 }\limits^{{t_1}} {{\left( {{t_1} - y} \right)}^{\upsilon - 1}}s\left( {y,T\left( y \right)} \right)dy} \right\| \cr & \le {{1 - \upsilon } \over {B\left( \upsilon \right)}}\left\| {s\left( {{t_2},T\left( {{t_2}} \right)} \right) - s\left( {{t_1},T\left( {{t_1}} \right)} \right)} \right\| \cr & + {{\upsilon P} \over {B\left( \upsilon \right)\Gamma \left( \upsilon \right)}}\left\{ {\mathop {\mathop {\int }\limits_0 }\limits^{{t_2}} {{\left( {{t_2} - y} \right)}^{\upsilon - 1}}dy - \mathop {\mathop {\int }\limits_0 }\limits^{{t_1}} {{\left( {{t_1} - y} \right)}^{\upsilon - 1}}} \right\}, \cr} and then 0t2(t2y)υ1dy0t1(t1y)υ1dy=0t1{(t1y)υ1(t2y)υ1}dy+t1t2(t2y)υ1dy=2(t2t1)υυ.\eqalign{& \mathop {\mathop {\int }\limits_0 }\limits^{{t_2}} {\left( {{t_2} - y} \right)^{\upsilon - 1}}dy - \mathop {\mathop {\int }\limits_0 }\limits^{{t_1}} {\left( {{t_1} - y} \right)^{\upsilon - 1}}dy = \mathop {\mathop {\int }\limits_0 }\limits^{{t_1}} \left\{ {{{\left( {{t_1} - y} \right)}^{\upsilon - 1}} - {{\left( {{t_2} - y} \right)}^{\upsilon - 1}}} \right\}dy + \mathop {\mathop {\int }\limits_{{t_1}} }\limits^{{t_2}} {\left( {{t_2} - y} \right)^{\upsilon - 1}}dy \cr & = 2{{{{\left( {{t_2} - {t_1}} \right)}^\upsilon }} \over \upsilon }. \cr} Now, we will investigate the following: s(t2,T(t2))s(t1,T(t1))T(t2)T(t1)(υ¯+ra+k(b+c))F1nt2t1At2t1.\eqalign{& \left\| {s\left( {{t_2},T\left( {{t_2}} \right)} \right) - s\left( {{t_1},T\left( {{t_1}} \right)} \right)} \right\| \le \left\| {T\left( {{t_2}} \right) - T\left( {{t_1}} \right)} \right\|\left( {\overline \upsilon + ra + k\left( {b + c} \right)} \right) \cr & \le {F_1}n\left\| {{t_2} - {t_1}} \right\| \cr & \le A\left\| {{t_2} - {t_1}} \right\|. \cr} Putting Eqs. (11) and (12) in Eq. (10), we have KT(t2)KT(t1)1υB(υ)At2t1+υPB(υ)Γ(υ)2t2t1υυ1υB(υ)At2t1+2υPB(υ)Γ(υ+1)t2t1.\eqalign{& \left\| {KT\left( {{t_2}} \right) - KT\left( {{t_1}} \right)} \right\| \le {{1 - \upsilon } \over {B\left( \upsilon \right)}}A\left\| {{t_2} - {t_1}} \right\| + {{\upsilon P} \over {B\left( \upsilon \right)\Gamma \left( \upsilon \right)}}2{{{{\left\| {{t_2} - {t_1}} \right\|}^\upsilon }} \over \upsilon } \cr & \le {{1 - \upsilon } \over {B\left( \upsilon \right)}}A\left\| {{t_2} - {t_1}} \right\| + {{2\upsilon P} \over {B\left( \upsilon \right)\Gamma \left( {\upsilon + 1} \right)}}\left\| {{t_2} - {t_1}} \right\|. \cr} Let δ1=ε1υB(υ)A+2υPB(υ)Γ(υ+1){\delta _1} = {\varepsilon \over {{{1 - \upsilon } \over {B\left( \upsilon \right)}}A + {{2\upsilon P} \over {B\left( \upsilon \right)\Gamma \left( {\upsilon + 1} \right)}}}} and then we find KT(t2)KT(t1)<ε.\left\| {KT\left( {{t_2}} \right) - KT\left( {{t_1}} \right)} \right\| < \varepsilon .

With the same rule step by step, we can obtain the following for other two equations. For each ɛ > 0, we can find δ2=ε1υB(υ)B+2υQB(υ)Γ(υ+1){\delta _2} = {\varepsilon \over {{{1 - \upsilon } \over {B\left( \upsilon \right)}}B + {{2\upsilon Q} \over {B\left( \upsilon \right)\Gamma \left( {\upsilon + 1} \right)}}}}, δ3=ε1υB(υ)C+2υVB(υ)Γ(υ+1){\delta _3} = {\varepsilon \over {{{1 - \upsilon } \over {B\left( \upsilon \right)}}C + {{2\upsilon V} \over {B\left( \upsilon \right)\Gamma \left( {\upsilon + 1} \right)}}}} such that KI(t2)KI(t1)1υB(υ)Bt2t1+2υQB(υ)Γ(υ+1)t2t1\left\| {KI\left( {{t_2}} \right) - KI\left( {{t_1}} \right)} \right\| \le {{1 - \upsilon } \over {B\left( \upsilon \right)}}B\left\| {{t_2} - {t_1}} \right\| + {{2\upsilon Q} \over {B\left( \upsilon \right)\Gamma \left( {\upsilon + 1} \right)}}\left\| {{t_2} - {t_1}} \right\| and KV(t2)KV(t1)1υB(υ)Ct2t1+2υVB(υ)Γ(υ+1)t2t1.\left\| {KV\left( {{t_2}} \right) - KV\left( {{t_1}} \right)} \right\| \le {{1 - \upsilon } \over {B\left( \upsilon \right)}}C\left\| {{t_2} - {t_1}} \right\| + {{2\upsilon V} \over {B\left( \upsilon \right)\Gamma \left( {\upsilon + 1} \right)}}\left\| {{t_2} - {t_1}} \right\|.

Consequently, KI(t2)KI(t1)<εandKV(t2)KV(t1)<ε\left\| {KI\left( {{t_2}} \right) - KI\left( {{t_1}} \right)} \right\| < \varepsilon {\rm{and}}\left\| {KV\left( {{t_2}} \right) - KV\left( {{t_1}} \right)} \right\| < \varepsilon are satisfied. So T (M) is equicontinuous and using Arzelo-Ascoli Theorem, T(M)¯\overline {T\left( M \right)} is compact.

Theorem 2

S : [a,b] × [0,∞) → [0,∞) be a continuous function and S (t,.) increasing for each t in [a,b]. Let us assume that one can find v,w satisfying M (D)v ≤ S (t,v), M (D)w ≥ S (t,w) for 0 ≤ v(t) ≤ w(t) and a ≤ t ≤ b. Then our new equation has a positive solution.

Proof

We should consider the fixed point of the operator K. We know that the operator K : H → H is completely continuous. Let T1≤ T2, I1≤ I2 and V1≤ V2 then we get KT1(t)1υB(υ)s(t,T1(t))+υB(υ)Γ(υ)0t(ty)υ1s(y,T1(y))dyKT2(t).\eqalign{& K{T_1}\left( t \right) \le {{1 - \upsilon } \over {B\left( \upsilon \right)}}s\left( {t,{T_1}\left( t \right)} \right) + {\upsilon \over {B\left( \upsilon \right)\Gamma \left( \upsilon \right)}}\mathop {\mathop {\int }\limits_0 }\limits^t {\left( {t - y} \right)^{\upsilon - 1}}\left\| {s\left( {y,{T_1}\left( y \right)} \right)} \right\|dy \cr & \le K{T_2}\left( t \right). \cr}

By a similar way, we obtain KI1(t)1υB(υ)s(t,I1(t))+υB(υ)Γ(υ)0t(ty)υ1s(y,I1(y))dyKI2(t),\eqalign{& K{I_1}\left( t \right) \le {{1 - \upsilon } \over {B\left( \upsilon \right)}}s\left( {t,{I_1}\left( t \right)} \right) + {\upsilon \over {B\left( \upsilon \right)\Gamma \left( \upsilon \right)}}\mathop {\mathop {\int }\limits_0 }\limits^t {\left( {t - y} \right)^{\upsilon - 1}}\left\| {s\left( {y,{I_1}\left( y \right)} \right)} \right\|dy \cr & \le K{I_2}\left( t \right), \cr} and KV1(t)1υB(υ)s(t,V1(t))+υB(υ)Γ(υ)0t(ty)υ1s(y,V1(y))dyKV2(t).\eqalign{& K{V_1}\left( t \right) \le {{1 - \upsilon } \over {B\left( \upsilon \right)}}s\left( {t,{V_1}\left( t \right)} \right) + {\upsilon \over {B\left( \upsilon \right)\Gamma \left( \upsilon \right)}}\mathop {\mathop {\int }\limits_0 }\limits^t {\left( {t - y} \right)^{\upsilon - 1}}\left\| {s\left( {y,{V_1}\left( y \right)} \right)} \right\|dy \cr & \le K{V_2}\left( t \right). \cr}

Hence K is increasing operator. By the help of conjecture, we have Km ≥ m and Kn ≤ n. So, the operator K : 〈n,m〉 → 〈n,m〉 is compact and continuous from Lemma 1. In that case, H is a normal cone.

To obtain uniqueness of the solutions, we begin the following steps. KT1(t)KT2(t)1υB(υ)s(t,T1(t))s(t,T2(t))+υB(υ)Γ(υ)0t(ty)υ1s(y,T1(y))s(y,T2(y))dy1υB(υ)F1T1(t)T2(t)+υB(υ)Γ(υ)F10t(ty)υ1T1(y)T2(y)dy,\eqalign{& \left\| {K{T_1}\left( t \right) - K{T_2}\left( t \right)} \right\| \le {{1 - \upsilon } \over {B\left( \upsilon \right)}}\left\| {s\left( {t,{T_1}\left( t \right)} \right) - s\left( {t,{T_2}\left( t \right)} \right)} \right\| \cr & + {\upsilon \over {B\left( \upsilon \right)\Gamma \left( \upsilon \right)}}\mathop {\mathop {\int }\limits_0 }\limits^t {\left( {t - y} \right)^{\upsilon - 1}}\left\| {s\left( {y,{T_1}\left( y \right)} \right) - s\left( {y,{T_2}\left( y \right)} \right)} \right\|dy \cr & \le {{1 - \upsilon } \over {B\left( \upsilon \right)}}{F_1}\left\| {{T_1}\left( t \right) - {T_2}\left( t \right)} \right\| \cr & + {\upsilon \over {B\left( \upsilon \right)\Gamma \left( \upsilon \right)}}{F_1}\mathop {\mathop {\int }\limits_0 }\limits^t {\left( {t - y} \right)^{\upsilon - 1}}\left\| {{T_1}\left( y \right) - {T_2}\left( y \right)} \right\|dy, \cr} which yields KT1(t)KT2(t){1υB(υ)F1+υF1bυB(υ)Γ(υ+1)}T1(t)T2(t).\left\| {K{T_1}\left( t \right) - K{T_2}\left( t \right)} \right\| \le \left\{ {{{1 - \upsilon } \over {B\left( \upsilon \right)}}{F_1} + {{\upsilon {F_1}{b^\upsilon }} \over {B\left( \upsilon \right)\Gamma \left( {\upsilon + 1} \right)}}} \right\}\left\| {{T_1}\left( t \right) - {T_2}\left( t \right)} \right\|.

For the other components of the model, we find KI1(t)KI2(t){1υB(υ)F2+υF2bυB(υ)Γ(υ+1)}I1(t)I2(t),\left\| {K{I_1}\left( t \right) - K{I_2}\left( t \right)} \right\| \le \left\{ {{{1 - \upsilon } \over {B\left( \upsilon \right)}}{F_2} + {{\upsilon {F_2}{b^\upsilon }} \over {B\left( \upsilon \right)\Gamma \left( {\upsilon + 1} \right)}}} \right\}\left\| {{I_1}\left( t \right) - {I_2}\left( t \right)} \right\|, and KV1(t)KV2(t){1υB(υ)F3+υF3cυB(υ)Γ(υ+1)}V1(t)V2(t).\left\| {K{V_1}\left( t \right) - K{V_2}\left( t \right)} \right\| \le \left\{ {{{1 - \upsilon } \over {B\left( \upsilon \right)}}{F_3} + {{\upsilon {F_3}{c^\upsilon }} \over {B\left( \upsilon \right)\Gamma \left( {\upsilon + 1} \right)}}} \right\}\left\| {{V_1}\left( t \right) - {V_2}\left( t \right)} \right\|.

Therefore, if the following conditions hold 1υB(υ)F1+υF1bυB(υ)Γ(υ+1)<1,1υB(υ)F2+υF2bυB(υ)Γ(υ+1)<1,1υB(υ)F3+υF3cυB(υ)Γ(υ+1)<1,\eqalign{& {{1 - \upsilon } \over {B\left( \upsilon \right)}}{F_1} + {{\upsilon {F_1}{b^\upsilon }} \over {B\left( \upsilon \right)\Gamma \left( {\upsilon + 1} \right)}} < 1, \cr & {{1 - \upsilon } \over {B\left( \upsilon \right)}}{F_2} + {{\upsilon {F_2}{b^\upsilon }} \over {B\left( \upsilon \right)\Gamma \left( {\upsilon + 1} \right)}} < 1, \cr & {{1 - \upsilon } \over {B\left( \upsilon \right)}}{F_3} + {{\upsilon {F_3}{c^\upsilon }} \over {B\left( \upsilon \right)\Gamma \left( {\upsilon + 1} \right)}} < 1, \cr} the mapping K is a contraction, which implies fixed point and thus the model has a unique positive solution.

Concluding remarks

In this work, we have examined the system response of the HIV infection model in [1] by modeling the AB fractional derivative in Caputo sense. The theoretical studies have shown that the solution of the discussed model in Eq. (4) is exist and unique under the AB fractional derivative.

eISSN:
2444-8656
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics