Open Access

Fault Diagnosis and Prognosis of Bearing Based on Hidden Markov Model with Multi-Features


Cite

Fig. 1

Proposed scheme for fault diagnosis.
Proposed scheme for fault diagnosis.

Fig. 2

M-state left-to-right HMM.
M-state left-to-right HMM.

Fig. 3

Training curves of various fault states of HMMs.
Training curves of various fault states of HMMs.

Fig. 4

Fault Identification results of training samples.
Fault Identification results of training samples.

Fig. 5

Identification results of various fault states of bearing for every 30 observation samples.
Identification results of various fault states of bearing for every 30 observation samples.

Fig. 6

Identification results of various fault states of bearing for every 100 observation samples.
Identification results of various fault states of bearing for every 100 observation samples.

Fig. 7

The lifetime curve of prediction test.
The lifetime curve of prediction test.

Some obtained observation values as the input of HMM.

States of faultsNo. of observation values
12345678910
Nor0.710.030.10.100.01000.050
R10.070.56.070.100.17000.030
R20.230.080.350.20.010.060.0400.010.02
R30.310.070.060.410.010.030.0400.070
I1000.020.010.840.070.01000.05
I20.040.30.070.060.130.370.020.0100
I3000.010.040.110.040.65000.15
O1000000.0200.9700.01
O20.370.10.020.32000.0100.180
O300.010.030.010.150.030.070.0300.67

Statistics of test results of various fault states for different sample lengths.

Length of observation samplesStates of faults
NorR1R2R3I1I2I3O1O2O3
1064.3%82.2%41.1%53.9%93.8%81.3%97.5%98.3%58.9%85.1%
2086.1%88.7%55.0%72.3%93.9%97.8%100%100%69.7%92.2%
3096.8%95.5%60.2%77.8%99.5%99.5%100%100%71.9%98.6%
40100%100%64.0%77.3%100%100%100%100%67.3%100%
50100%100%63.7%85.6%100%100%100%100%70.6%100%
60100%100%69.1%86.9%100%100%100%100%74.3%100%
70100%100%76.8%90.6%100%100%100%100%91.7%100%
80100%100%83.6%91.2%100%100%100%100%100%100%
90100%100%83.2%94.4%100%100%100%100%100%100%
100100%100%90.7%100%100%100%100%100%100%100%
110100%100%95.7%100%100%100%100%100%100%100%
120100%100%100%100%100%100%100%100%100%100%
130100%100%100%100%100%100%100%100%100%100%
140100%100%100%100%100%100%100%100%100%100%
150100%100%100%100%100%100%100%100%100%100%

The statistics of the overall training results using HMM.

States of faultsNorR1R2R3I1I2I3O1O2O3
Accuracy100%99%95%90%100%99%100%100%96%99%

Time-domain statistical characteristics.

ft1=1Ni=1Nxif{t_1} = {1 \over N}\sum\limits_{i = 1}^N {{x_i}} ft2=1Ni=1Nxi2f{t_2} = \sqrt {{1 \over N}\sum\limits_{i = 1}^N {x_i^2} } ft3=[1Ni=1N|xi|]2f{t_3} = {\left[ {{1 \over N}\sum\limits_{i = 1}^N {\sqrt {\left| {{x_i}} \right|} } } \right]^2}ft4=1Ni=1N|xi|f{t_4} = {1 \over N}\sum\limits_{i = 1}^N {\left| {{x_i}} \right|}
ft5=1Ni=1Nxi3f{t_5} = {1 \over N}\sum\limits_{i = 1}^N {x_i^3} ft6=1Ni=1Nxi4f{t_6} = {1 \over N}\sum\limits_{i = 1}^N {x_i^4} ft7=1N1i=1N(xiX¯)2f{t_7} = {1 \over {N - 1}}\sum\limits_{i = 1}^N {{{\left( {{x_i} - \bar X} \right)}^2}} f t8 = max{|xi|}
f t9 = min{xi}f t10 = max(xi) − min(xi)ft11=ft2ft4f{t_{11}} = {{f{t_2}} \over {f{t_4}}}ft12=ft8ft2f{t_{12}} = {{f{t_8}} \over {f{t_2}}}
ft13=ft8ft4f{t_{13}} = {{f{t_8}} \over {f{t_4}}}ft14=ft8ft3f{t_{14}} = {{f{t_8}} \over {f{t_3}}}ft15=ft5ft23f{t_{15}} = {{f{t_5}} \over {ft_2^3}}ft16=ft6ft24f{t_{16}} = {{f{t_6}} \over {ft_2^4}}

Frequency-domain statistical characteristics.

ff1=k=1Ks(k)kf{f_1} = {{\sum\limits_{k = 1}^K {s(k)} } \over k}ff2=k=1K(s(k)ff1)2k1f{f_2} = {{\sum\limits_{k = 1}^K {{{\left( {s(k) - f{f_1}} \right)}^2}} } \over {k - 1}}ff3=k=1K(s(k)ff1)3k(p2)3f{f_3} = {{\sum\limits_{k = 1}^K {{{\left( {s(k) - f{f_1}} \right)}^3}} } \over {k{{\left( {\sqrt {{p_2}} } \right)}^3}}}ff4=k=1K(s(k)ff1)4kff22f{f_4} = {{\sum\limits_{k = 1}^K {{{\left( {s(k) - f{f_1}} \right)}^4}} } \over {k \cdot ff_2^2}}
ff5=k=1Kfks(k)k=1Ks(k)f{f_5} = {{\sum\limits_{k = 1}^K {{f_k}s(k)} } \over {\sum\limits_{k = 1}^K {s(k)} }}ff6=k=1K(fkff5)2s(k)kf{f_6} = \sqrt {{{\sum\limits_{k = 1}^K {{{\left( {{f_k} - f{f_5}} \right)}^2}s(k)} } \over k}} ff7=k=1Kfk2s(k)k=1Ks(k)f{f_7} = \sqrt {{{\sum\limits_{k = 1}^K {f_k^2s(k)} } \over {\sum\limits_{k = 1}^K {s(k)} }}} ff8=k=1Kfk4s(k)k=1Kfk2s(k)f{f_8} = \sqrt {{{\sum\limits_{k = 1}^K {f_k^4s(k)} } \over {\sum\limits_{k = 1}^K {f_k^2s(k)} }}}
ff9=k=1Kfk2s(k)k=1Ks(k)k=1Kfk4s(k)f{f_9} = {{\sum\limits_{k = 1}^K {f_k^2s(k)} } \over {\sqrt {\sum\limits_{k = 1}^K {s(k)} \sum\limits_{k = 1}^K {f_k^4s(k)} } }}ff10=ff6ff5f{f_{10}} = {{f{f_6}} \over {f{f_5}}}ff11=k=1K(fkff5)3s(k)kp63f{f_{11}} = {{\sum\limits_{k = 1}^K {{{\left( {{f_k} - f{f_5}} \right)}^3}s(k)} } \over {kp_6^3}}ff12=k=1K(fkff5)4s(k)kp64f{f_{12}} = {{\sum\limits_{k = 1}^K {{{\left( {{f_k} - f{f_5}} \right)}^4}s(k)} } \over {kp_6^4}}
ff13=k=1K(|fkp5|)12s(k)kp6f{f_{13}} = {{\sum\limits_{k = 1}^K {{{\left( {\left| {{f_k} - {p_5}} \right|} \right)}^{{1 \over 2}}}s(k)} } \over {k\sqrt {{p_6}} }}ff14=k=1K(fkff5)2s(k)k=1Ks(k)f{f_{14}} = {{\sum\limits_{k = 1}^K {{{\left( {{f_k} - f{f_5}} \right)}^2}s(k)} } \over {\sum\limits_{k = 1}^K {s(k)} }}
eISSN:
2444-8656
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics