Open Access

MicroRNAs as Biomarkers and Therapeutic Targets in Heart Failure


Cite

1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. - 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129-220010.1093/eurheartj/ehw12827206819Search in Google Scholar

2. Morrow DA, de Lemos JA. Benchmarks for the assessment of cardiovascular biomarkers. Circulation. 2007;115(8):949–95210.1161/CIRCULATIONAHA.106.68311017325253Search in Google Scholar

3. Correale M, Monaco I, Brunetti ND, di Biase M, Metra M, Nodari S, et al. Redefining biomarkers in heart failure. 2018;23(2):237-253Search in Google Scholar

4. Iaconetti C, Gareri C, Polimeni A, Indolfi C. Non-Coding RNAs: The “Dark Matter” of Cardiovascular Pathophysiology. Int J Mol Sci. 2013;14(10):19987-2001810.3390/ijms141019987382159924113581Search in Google Scholar

5. Islas JF, Moreno-Cuevas JE. A MicroRNA Perspective on Cardiovascular Development and Diseases: An Update. Int J Mol Sci. 2018;19(7):2075-209010.3390/ijms19072075607375330018214Search in Google Scholar

6. Tian J, An X, Niu L. Role of microRNAs in cardiac development and disease. Exp Ther Med. 2017;13(1):3-810.3892/etm.2016.3932524477928123459Search in Google Scholar

7. Sárközy M, Kahán Zs, and Csont T. A myriad of roles of miR-25 in health and disease. Oncotarget. 2018;9(30):21580-2161210.18632/oncotarget.24662594037629765562Search in Google Scholar

8. Wojciechowska A, Braniewska A, Kozar-Kamińska K. MicroRNA in cardiovascular biology and disease. Adv Clin Exp Med. 2017;26(5):865–87410.17219/acem/6291529068585Search in Google Scholar

9. Wang J, Liew OW, Chen Y-T. Overview of MicroRNAs in Cardiac Hypertrophy, Fibrosis, and Apoptosis. Int J Mol Sci. 2016;17(5):749-77010.3390/ijms17050749488157027213331Search in Google Scholar

10. de Gonzalo-Calvo D, Iglesias-Gutiérrez E, Llorente-Cortés V. Epigenetic Biomarkers and Cardiovascular Disease: Circulating MicroRNAs. Rev Esp Cardiol (Engl Ed). 2017;70(9):763-76910.1016/j.recesp.2017.02.027Search in Google Scholar

11. Schulte C, Karakas M, Zeller T. microRNAs in cardiovascular disease – clinical application. Clin Chem Lab Med. 2017;55(5):687–70410.1515/cclm-2016-057627914211Search in Google Scholar

12. Yan H, Ma F, Li Y, Zhangv Y, Wang C, Qiu D. miRNAs as biomarkers for diagnosis of heart failure. Medicine. 2017;96(22):22-3210.1097/MD.0000000000006825545969828562533Search in Google Scholar

13. Marfella R, Di Filippo C, Potenza N, Sardu C, Rizzo MR, Siniscalchi M. Circulating microRNA changes in heart failure patients treated with cardiac resynchronization therapy: responders vs. non-responders. Eur J of Heart Fail. 2013;15(11):1277–128810.1093/eurjhf/hft08823736534Search in Google Scholar

14. Tijsen AJ, Creemers EE, Moerland PD, de Windt LJ, Kok WE, Pinto YM. MiR423-5p As a Circulating Biomarker for Heart Failure. Circ Res. 2010;106(6):1035-103910.1161/CIRCRESAHA.110.21829720185794Search in Google Scholar

15. Schmitter D, Voors AA, van der Harst P. HFpEF vs. HFrEF: can microRNAs advance the diagnosis? Eur J of Heart Fail. 2015;17(4):351–354Search in Google Scholar

16. Nair N, Gupta S, Collier IX, Gongora E, Vijayaraghavan K. Can microRNAs emerge as biomarkers in distinguishing HFpEF versus HFrEF? Int. J. of Cardiology 2014;175(3):395–399Search in Google Scholar

17. Oliveira-Carvalho V, Carvalho VO, Silva MM, Guimarães GV, Bocchi EA. MicroRNAs: a new paradigm in the treatment and diagnosis of heart failure? Arq Bras Cardiol. 2012;98(4):362-369Search in Google Scholar

18. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438(7068):685-689.10.1038/nature0430316258535Search in Google Scholar

19. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456(7224):980-98410.1038/nature0751119043405Search in Google Scholar

20. Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, Lynch JM, et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation. 2011;124(14):1537-154710.1161/CIRCULATIONAHA.111.030932335355121900086Search in Google Scholar

eISSN:
2247-6113
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Medicine, Clinical Medicine, other