Open Access

Development of a Capillary Electrophoresis Method for the Separation of Fluoroquinolone Derivatives in Acidic Background Electrolyte


Cite

1. Beale JM jr. Synthetic antibacterial agents, in Block JH, Beale JM (eds): Wilson and Gisvold’s Textbook of Organic Medicinal and Pharmaceutical Chemistry 11th edition. Lippincott Williams & Wilkins. Philadelphia, 2004, 247-258.Search in Google Scholar

2. Andersson MI, MacGowan AO. Development of the quinolones. J Antimicrob Chemother. 2003;51:1-11.10.1093/jac/dkg212Search in Google Scholar

3. Bolon MK. The newer fluoroquinolone. Med Clin N Am. 2011;95:793-811.10.1016/j.mcna.2011.03.006Search in Google Scholar

4. Jimidar MI. Theoretical considerations in performance of various modes of CE, in Ahuja S, Jimidar M (eds): Capillary Electrophoresis Methods for Pharmaceutical Analysis, Volume 9 (Separation Science and Technology) 1 edition. Academic Press Elsevier, Amsterdam, 2008, 9-42.10.1016/S0149-6395(07)00002-5Search in Google Scholar

5. Pérez-Ruiz T, Martínez-Lozano C, Sanz A, Bravo E. Separation and simultaneous determination of quinolone antibiotics by capillary zone electrophoresis. Chromatographia. 1999;49:419-423.10.1007/BF02467617Search in Google Scholar

6. Sun H, He P, Lv Y, Liang S. Effective separation and simultaneous determination of seven fluoroquinolones by capillary electrophoresis with diode-array detector. J Chromatogr B. 2007;852:145-151.10.1016/j.jchromb.2007.01.016Search in Google Scholar

7. Ferdig M, Kaleta A, Thanh Vo TD, Buchberger W. Improved capillary electrophoretic separation of nine (fluoro)quinolones with fluorescence detection for biological and environmental samples. Journal of Chromatography A. 2004;1047:305-311.10.1016/S0021-9673(04)01102-1Search in Google Scholar

8. Yang Z, Qin W. Separation of fluoroquinolones in acidic buffer by capillary electrophoresis with contactless conductivity detection. J Chromatogr A. 2009;1216:5327-5332.10.1016/j.chroma.2009.05.014Search in Google Scholar

9. Faria AF, de Souza MVN, de Almeida MV, de Oliveira MAL. Simoultaneous separation of five fluoroquinolone antibiotics by capillary zone electrophoresis. Anal Chim Acta. 2006;579:185-192.10.1016/j.aca.2006.07.037Search in Google Scholar

10. Sun J, Sakai S, Tauchi Y, et al. Determination of lipophilicity of two quinolone antibacterials, ciprofloxacin and grepafloxacin, in the protonation equilibrium. Eur J Pharm Biopharm. 2002;54:51-58.10.1016/S0939-6411(02)00018-8Search in Google Scholar

11. Lemaire S, Tulkens PM, Van Bambeke F. Contrasting effects of acidic pH on the extracellular and intracellular activities of the anti-gram-positive fluoroquinolones moxifloxacin and delafloxacin against Staphylococcus aureus. Antimicrob Agents Ch. 2011;55:649-658.10.1128/AAC.01201-10302875321135179Search in Google Scholar

12. Noszál B. Acid-base properties of bioligands, in K. Burger (eds): Biocoordination chemistry: coordination equilibra in biologically active system. Ellis Horwood, Chichester UK, 1990, 18-41.Search in Google Scholar

13. Lee DS, Hun HJ, Kim K, et al. Dissociation and complexation of fl uoroquinolone analogues. J Pharm Biomed Anal. 1994;12:157-164.10.1016/0731-7085(94)90025-6Search in Google Scholar

14. Rusu A, Tóth G, Szőcs L, et al. Triprotic site-specific acid-base equilibria and related properties of fluoroquinolone antibacterials. J Pharm Biomed Anal. 2012;66:50-57.10.1016/j.jpba.2012.02.024Search in Google Scholar

15. Lin CE, Deng YJ, Liao WS, et al. Electrophoretic behavior and pKa determination of quinolones with a piperazinyl substituent by capillary zone electrophoresis. J Chromatogr A. 2004;1051:283-290.10.1016/S0021-9673(04)01422-0Search in Google Scholar

16. Lombardo-Agüí M, García-Campana AM, Gámiz-Gracia L, Cruces Blanco C. Laser induced fluorescence coupled to capillary electrophoresis for the determination of fluoroquinolones in foods of animal origin using molecularly imprinted polymers. J Chromatogr A. 2010;1217: 2237-2242.10.1016/j.chroma.2010.02.016Search in Google Scholar

17. Yang Z, Qin W. Separation of fluoroquinolones in acidic buffer by capillary electrophoresis with contactless conductivity detection. J Chromatogr A. 2009;1216:5327-5332.10.1016/j.chroma.2009.05.014Search in Google Scholar

18. European Pharmacopoeia 7th edition. Council of Europe, Strasbourg, 2010, 367.Search in Google Scholar

19. Drakopoulos AI, Ioannou PC. Spectrofluorimetric study of the acid-base equilibria and complexation behavior of the fluoroquinolone antibiotics ofloxacin, norfloxacin, ciprofloxacin and pefloxacin in aqueous solution.Search in Google Scholar

Anal Chim Acta. 1997;354:197-204.10.1016/S0003-2670(97)00465-0Search in Google Scholar

20. Park HR, Kim TH, Bark KM. Physicochemical properties of quinolone antibiotics in various environments. Eur J Med Chem. 2002;37:443-460.10.1016/S0223-5234(02)01361-2Search in Google Scholar

21. Barbosa J, Barrón D, Jiménez-Lozano E, Sanz-Nebot V. Comparison between capillary electrophoresis, liquid chromatography, potentiometric and spectrophotometric techniques for evaluation of pKa values of zwitterionic drugs in acetonitrile-water mixtures. Anal Chim Acta. 2001;437:309-321.10.1016/S0003-2670(01)00997-7Search in Google Scholar

22. Jiménez-Lozano E, Marqués I, Barrón D, Beltrán JL, Barbosa J.Search in Google Scholar

Determination of pKa values of quinolones from mobility and spectroscopic data obtained by CE and a DAD. Anal Chim Acta. 2002;464:37-45.10.1016/S0003-2670(02)00435-XSearch in Google Scholar

23. Langlois MH, Montagut M, Dubost JP, Grellet J, Saux MC. Protonation equilibrium and lipophilicity of moxifloxacin. J Pharm Biomed Anal. 2005;37:389-393.10.1016/j.jpba.2004.10.02215708683Search in Google Scholar

24. Lorenzo F, Navaratnam S, Edge R, Allen NS. Primary Photophysical Properties of Moxifloxacin - A Fluoroquinolone Antibiotic. Photochem Photobiol. 2008;84:1118-1125.10.1111/j.1751-1097.2007.00269.xSearch in Google Scholar

25. Neves P, Leite A, Rangel M, de Castro B, Gameiro P. Influence of structural factors on the enhanced activity of moxifloxacin: a fluorescence and EPR spectroscopic study, Anal Bioanal Chem. 2007;387:1543-1552.Search in Google Scholar

26. Takács-Novák K, Noszál B, Hermecz I, et al. Protonation equilibria of quinolone antibacterials. J Pharm Sci. 1990;79:1023-1028.10.1002/jps.2600791116Search in Google Scholar

27. Altria KD. Introduction to CE and the Use of CE in Pharmaceutycal Analysis, in Altria KD (eds): Analysis of Pharmaceuticals by Capillary Electrophoresis. Chromatographia CE-Series, Vieweg, 1998, 1-18.10.1007/978-3-322-85011-9_1Search in Google Scholar

28. Sänger-van de Griend CE. General Considerations to Improve Performance of CE Methods, in Ahuja S, Jimidar M (eds): Capillary Electrophoresis Methods for Pharmaceutical Analysis. Elsevier/Academic Press, Amsterdam, 2008, 123-144.10.1016/S0149-6395(07)00006-2Search in Google Scholar

29. ICH. Validation of analytical procedures: text and methodology Q2(R1).Search in Google Scholar

Geneva, 2005Search in Google Scholar

30. Peters FT, Drummer OH, Musshoff F. Validation of new methods. Forensic Sci Int. 2007;165:216-224.10.1016/j.forsciint.2006.05.02116781833Search in Google Scholar

31. Peters FT, Maurer HH. Bioanalytical method validation and its implications for forensic and clinical toxicology - A review, in De Bièvre P, Günzler H (eds.): Validation in Chemical Measurement, Springer-Verlag, Berlin Heidelberg, 2005, 1-9.10.1007/3-540-27034-5_1Search in Google Scholar

32. Ross GA. Instrumental validation in capillary electrophoresis and checkpoints for method validation, in De Bièvre P, Günzler H (eds.): Validation in Chemical Measurement, Springer-Verlag, Berlin Heidelberg, 2005, 14-23. 10.1007/3-540-27034-5_3Search in Google Scholar

eISSN:
2247-6113
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Medicine, Clinical Medicine, other